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Abstract

A d-dimensional rational polytope P is a polytope whose vertices are located at the nodes of Zd lattice.
Consider the number |kP ∩ Zd | of points inside the inflated P with coefficient of inflation k(k = 1, 2, 3, . . .).
The Ehrhart polynomial of P counts the number of such lattice points inside the inflated P and (may be) at its
faces (including vertices). In Part I [A.L. Kholodenko, New string for old Veneziano amplitudes. I. Analytical
treatment, J. Geom. Phys. 55 (2005) 50–74] of our four parts work we noticed that Veneziano amplitude
is just the Laplace transform of the generating function (considered as a partition function in the sense of
statistical mechanics) for the Ehrhart polynomial for the regular inflated simplex obtained as deformation
retract of the Fermat (hyper) surface living in the complex projective space. This observation is sufficient
for development of new symplectic (this work) and supersymmetric (Part II) physical models reproducing
the Veneziano (and Veneziano-like) amplitudes. General ideas (e.g. those related to the properties of Ehrhart
polynomials) are illustrated by simple practical examples (e.g. use of mirror symmetry for explanation of
available experimental data on �� scattering, etc.) worked out in some detail. Obtained final results are
in formal accord with those earlier obtained by Vergne [M. Vergne, Convex polytopes and quanization of
symplectic manifolds, Proc. Natl. Acad. Sci. 93 (1996) 14238–14242].
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1. Introduction

1.1. Connection with earlier work

In our earlier works, Refs. [1,2], which we shall call Parts I and II,1 we initiated development
of new formalism reproducing both the Veneziano and Veneziano-like (tachyon-free) amplitudes
and models generating these amplitudes. In particular, in Part II we discussed one of such models.
Contrary to traditional treatments, we demonstrated that our model is supersymmetric and finite-
dimensional. This result was obtained with help of the theory of invariants of pseudo-reflection
groups. The partition function, Eq. (II, 6.10), for this model is given by the Poincare′ polynomial

P((S(V ) ⊗ E(V ))G; z) =
n∏
i=1

1 − zq+i

1 − zi
. (1.1)

In the limit: z → 1, the above result is reduced to

P((S(V ) ⊗ E(V ))G; z = 1) = (q+ 1)(q+ 2) · · · (q+ n)

n!
≡ p(q, n). (1.2)

which is Eq. (II, 6.11). The detailed combinatorial explanation of these results was given already
in Part II. In this work, to avoid repetitions, we would like to extend such an explanation having
in mind development of the symplectic model reproducing Veneziano amplitudes.

Steps toward designing of such a model were made already in Part I where it was noticed that
the unsymmetrized Veneziano amplitude is obtainable as the Laplace transform of the partition
function

P(q, t) =
∞∑
n=0

p(q, n)tn (1.3)

where p(q, n) is the same as in Eq. (1.2). In Ref. [3], Vergne demonstrated (without reference
to string theory or Veneziano amplitudes) that such partition function has both symplectic and
quantum mechanical meaning: the quantity p(q, n) is dimension of the quantum Hilbert space
associated (through the coadjoint orbit method) with the classical system made out of finite number
of harmonic oscillators living on a specially designed symplectic manifold.

In this work using different arguments we reobtain her final results. Our use of different
arguments is motivated by our desire to demonstrate connections between the formalism developed
in this paper and that already in use in the mathematical physics literature. More importantly, the
treatment presented below complements that developed earlier in Parts I and II.

In Part II, following work by Lerche et al. [4], we adopted the idea that any kind of one variable
Poincare′ polynomial (actually, up to a constant) can be interpreted as the Weyl character formula.
Since, according to Part II, both Eqs. (1.1) and (1.3) are Poincare′ polynomials, their interpretation
in terms of the Weil character formula provides major ingredient toward reconstruction of the
Veneziano amplitudes from the underlying quantum mechanical partition function (the Weyl
character formula). Going into opposite direction, such amplitudes acquire some topological
meaning to be further illuminated in this work. Direct link between topology (the Poincare′
polynomials) and quantum mechanics (the Weyl character formula) is certainly not limited to
its use only for the Veneziano amplitudes and is of independent interest. In view of this, in the

1 In referring to the results of these papers we shall use notations like Eq. (II, 5.10), etc.
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next subsection we would like to provide simple arguments (different from those in the work by
Lerche et al) explaining why this is so.

1.2. A motivating example

Consider a finite geometric progression of the type

F(c,m) =
m∑

l=−m
exp{cl} = exp{−cm}

∞∑
l=0

exp{cl} + exp{cm}
0∑

l=−∞
exp{cl}

= exp{−cm} 1

1 − exp{c} + exp{cm} 1

1 − exp{−c}

= exp{−cm}
[

exp{c(2m+ 1)} − 1

exp{c} − 1

]
. (1.4)

The reason for displaying the intermediate steps will become apparent shortly. First, however, we
would like to consider the limit: c → 0+ of F(c,m). Clearly, it is given by F(0,m) = 2m+ 1.
The number 2m+ 1 equals to the number of integer points in the segment [−m,m] including
boundary points. It is convenient to rewrite the above result in terms of x = exp{c}. We shall
write formally F(x,m) instead of F(c,m) from now on. Using these notations, let us consider the
related function:

F̄(x,m) = (−1)F
(

1

x
,−m

)
. (1.5)

Such type of relation (the Ehrhart–Macdonald reciprocity law) is characteristic for the Ehrhart
polynomial for the rational polytopes to be defined in the next subsection. In Ref. [5], Stanley
provides many applications of this reciprocity law. In our case, we obtain explicitly:

F̄(x,m) = (−1)
x−(−2m+1) − 1

x−1 − 1
xm. (1.6)

In the limit x → 1 + 0+ we obtain: F̄(1,m) = 2m− 1. The number 2m− 1 is equal to the
number of integer points strictly inside the segment [−m,m]. These, seemingly trivial, results
can be broadly generalized. First, we replace x by x. Next, we replace the summation sign in the
left-hand side of Eq. (1.4) by the multiple summation, etc. Thus, obtained function F(x,m) in the
limit xi → 1 + 0+, i = 1 − d, produces the anticipated result:

F(1,m) = (2m+ 1)d (1.7)

for number of points inside and at the edges of the d-dimensional cube in Euclidean space Rd .
Accordingly, for the number of points strictly inside the cube we obtain: F̄(1,m) = (2m− 1)d .
The rationale for describing this limiting procedure is caused by its connection with our earlier
result, Eq. (1.2). To explain this we need to extend our simple results in order to describe analogous
situation for arbitrary centrally symmetric polytope. This is accomplished in several steps. We
begin with some definitions.

Definition 1.1. A subset of Rn is a polytope (or polyhedron) P if there is a r × d matrix M (with
r ≤ d) and a vector b ∈ Rd such that

P = {x ∈ Rd | Mx ≤ b}. (1.8)
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Definition 1.2. Provided that the Euclidean d-dimensional scalar product is given by

〈x · y〉 =
d∑
i=1

xiyi (1.9)

2a rational (respectively, integral) polytope (or polyhedron) P is defined by the set

P = {x ∈ Rd | 〈ai · x〉 ≤ βi, i = 1, . . . , r} (1.10)

where ai ∈ Qn and βi ∈ Q for i = 1, . . . , r (respectively, ai ∈ Zn and βi ∈ Z for i = 1, . . . , r).

Let Vert P denote the vertex set of the rational polytope, in the case considered thus far, the
d-dimensional cube. Let {uv1, . . . , uvd} be the orthogonal basis (not necessarily of unit length)
made of the highest weight vectors of the Weyl–Coxeter reflection group Bd appropriate for the
cubic symmetry.3 These vectors are oriented along the positive semi axes with respect to the
center of symmetry of (hyper)cube. When parallel translated to the edges ending at particular
hypercube vertex v, they can point either in or out of this vertex. In terms of these notations, the
d-dimensional version of Eq. (1.4) can be rewritten now as follows:

∑
x∈P∩Zd

exp{〈c · x〉} =
∑

v∈Vert P
exp{〈c · v〉}

[
d∏
i=1

(1 − exp{−ciuvi })
]−1

. (1.11)

Correctness of this equation can be readily checked by considering special cases of a segment,
square, cube, etc. The result, Eq. (1.11), obtained for the polytope of cubic symmetry can be
extended to the arbitrary convex centrally symmetric polytope as we shall demonstrate below. This
fact allows us to investigate properties of more complex polytopes with help of polytopes of cubic
symmetry. Moreover, we shall argue below that the right-hand side of Eq. (1.11) is mathematically
equivalent to the right-hand side of Eq. (1.1). Because of this, the limiting procedure c → 0+
producing the number of points inside (and at the boundaries) of the polyhedron P in the left-
hand side of Eq. (1.11) is of the same nature as the limiting procedure: z → 1 in Eq. (1.2) where,
as result of this procedure, the right-hand side of Eq. (1.2) produces the number of lattice points
for the inflated (with inflation coefficient q) rational simplex of dimension n “living” in Zn lattice.

Remark 1.3. For an arbitrary convex polytope the above formula, Eq. (1.11), was obtained
(seemingly independently) in many different contexts. For instance, in the context of discrete and
computational geometry it is attributed to Brion [6]. In view of Eq. (1.5), it can as well be attributed
to Ehrhart, Stanley [5] and to many others. In fact, for the case of centrally symmetric polytopes
this formula is just a special case of the Weyl’s character formula. This will be demonstrated
below, in Section 2.

There are many paths to arrive at final results of this paper, i.e. to reobtain the results of Vergne
[3], and to use them for construction of new models reproducing the Veneziano and Veneziano-
like amplitudes. They include, for instance, the algebro-geometric, symplectic, group-theoretic,
combinatorial, supersymmetric, etc. pathways to reach the same destination. In our opinion, the
most direct way to arrive at final results is combinatorial. Although it will be discussed at length
in Part IV from yet another perspective, in this work we present some essentials needed for their

2 So that x lives in space dual to that for y.
3 For a brief guide to the Weyl–Coxeter reflection groups, please, see Appendix A to Part II.
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immediate use in the rest of the paper. In particular, we would like to discuss now some facts
about the Ehrhart polynomials having in mind their uses in high energy physics.

1.3. Ehrhart polynomials, mirror symmetry and the extended Veneziano amplitudes

In the previous subsection we introduced Eq. (1.5). It characterizes the Ehrhart polynomial. It
is important to realize that p(q, n) in Eq. (1.2) already is an example of the Ehrhart polynomial.
Evidently, Eq. (1.2) can be written formally as

p(q, n) = anq
n + an−1q

n−1 + · · · + a0. (1.12)

In Ref. [7], it is argued that for any convex rational polytope P the Ehrhart polynomial can be
written as

|qP ∩ Zn| = P(q, n) = an(P)qn + an−1(P)qn−1 + · · · + a0(P) (1.13)

with coefficients a0, . . . , an specific for a given polytope P. Nevertheless, irrespective to the type
of polytope P, it is known that a0 = 1 and an = VolP, where VolP is the Euclidean volume of
the polytope. To calculate the remaining coefficients of this polynomial explicitly for an arbitrary
convex polytope is a difficult task in general. Such task was accomplished rather recently in Ref.
[8]. The authors of [8] recognized that in order to obtain the remaining coefficients it is useful to
calculate the generating function for the Ehrhart polynomial. In our case this function is given by
Eq. (1.3). From Eq. (I, 1.22) we already know that formally this is the partition function for the
unsymmetrized Veneziano amplitude. In view of our Eq. (1.1) taken from Part II, we also know
that it can be also looked upon as the partition function for the Veneziano amplitudes. Hence,
now we would like to explain how Eqs. (1.1) and (1.3) are related to each other from the point of
view of commutative algebra and combinatorics of polytopes. By doing so some useful physical
information will be obtained as well.

Long before the results of Ref. [8] were published, it was known [9] that the generating function
for the Ehrhart polynomial of P can be written in the following universal form

F(P, x) =
∞∑
q=0

P(q, n)xq = h0(P) + h1(P)x+ · · · + hn(P)xn

(1 − x)n+1 . (1.14)

For the Veneziano partition function all coefficients, excepth0(P), are zero and, of course,h0(P) =
1 [10]. This can be easily understood in view of Eq. (I, 1.20). We brought to our readers attention
the above general result in view of our task of comparing Eqs. (1.1) and (1.3) and of possibly
generalizing the Veneziano amplitudes and the partition functions associated with them.

In practical applications it should be noted that the combinatorial factor p(q, n), Eq. (1.2),
representing the number of points in the inflated simplex P (with coefficient of inflation q) whose
vertex set Vert P belongs to Zn lattice can be formally written in several equivalent ways. In
particular, as we have mentioned in Part II,

p(q, n) = (q+ n)!

q!n!
= (q+ 1) · · · (q+ n)

n!
= (n+ 1) · · · (n+ q)

q!
. (1.15)

This fact has some physical significance. For instance, in particle physics literature, e.g. see Refs.
[11,12], the third option is commonly used. Let us recall how this happens. One is looking for an
expansion of the factor (1 − x)−α(t)−1 under the integral of beta function as explained in Part I.
Looking at Eq. (1.14) one realizes that the Mandelstam variable α(t) plays a role of dimensionality
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of Z-lattice. Hence, we have to identify it with n in the second option provided by Eq. (1.15). This
is not the way such an identification is done in physics literature where, in fact, the third option
provided by Eq. (1.15) is commonly used with n = α(t) effectively being the inflation factor while
q effectively being the dimensionality of the lattice.4 A quick look at Eqs. (1.3) and (1.14) shows
that under such circumstances the generating function for the Ehrhart polynomial and that for the
Veneziano amplitude are formally not the same: in the first (mathematical) case one is dealing with
lattices of fixed dimensionality and is considering summation over various inflation factors at the
same time, while in the third (physical) case, one is dealing with the fixed inflation factor n = α(t)
while summing over lattices of different dimensionalities. Such arguments are superficial however
in view of Eqs. (I, 1.20) and (1.14) above. Using these equations it is clear that correct agreement
between Eqs. (1.3) and (1.14) can be reached if one is usingP(q, n) = p(q, n) with the second (i.e.
mathematical) option offered by Eq. (1.15). By doing so no changes in the pole locations for the
Veneziano amplitude occur. Moreover, for a given pole the second and the third option in Eq. (1.15)
produce exactly the same contributions into the residue thus making them physically indistinguish-
able. Nevertheless, our choice of the mathematically meaningful interpretation of the Veneziano
amplitude as the Laplace transform of the Ehrhart polynomial generating function provides one of
the major reasons for development of the formalism of Parts I through IV. In particular, it allows
us to think about possible generalizations of the Veneziano amplitude using generating functions
for the Ehrhart polynomials for polytopes of other types. As it is demonstrated by Stanley [9,13],
both Eqs. (1.1) and (1.14) have group—invariant meaning as Poincare′ polynomials: Eq. (1.14)
is associated with the Poincare′ polynomial for the so called Stanley–Reisner polynomial ring
while Eq. (1.1) is the Poincare polynomial for the so-called Gorenstein ring. Naturally, these two
rings are interrelated thus providing the desired connection between Eqs. (1.1) and (1.14). For the
sake of space, we refer our readers to the original works by Stanley [9,13] where all mathematical
details can be found. At the same time, we have supplied sufficient information in order to dis-
cuss some physical applications. In particular, following Batyrev [14, p. 392], and Hibi [15], we
would like to discuss the reflexive (polar (or dual)) polytopes playing major role in calculations
involving mirror symmetry. To those of our readers who are familiar with some basic facts of solid
state physics [16] the concept of a dual (or polar) polytope should look quite familiar since it is
completely analogous to that for the reciprocal lattice. Both direct and reciprocal lattices are used
routinely in calculations related to physical properties of crystalline solids. The requirement that
physical observables should remain the same irrespective to what lattice is used in computations
is completely natural. Not surprisingly, such a requirement formally coincides with that used in
the high energy physics. In the paper by Greene and Plesser [17, p. 26], one finds the following
statement: “Thus, we have demonstrated that two topologically distinct Calabi–Yau manifolds M
andM ′ give rise to the same conformal field theory. Furthermore, although our argument has been
based only at one point in the respective moduli spaces MM and MM′ of M and M ′(namely the
point which has a minimal model interpretation and hence respects the symmetries by which we
have orbifolded) the result necessarily extends to all ofMM andMM′”. In Parts I and II we argued
that, in view of the Veneziano condition, there is a significant difference between calculations of
observables (amplitudes) of high energy physics and those in conformal field theories. This differ-
ence is analogous to the difference between the point group symmetries in the liquid/gas phases
and translational symmetries of solid phases. Hence, extension of the Veneziano amplitudes with

4 We have to warn our readers that, to our knowledge, nowhere in physics literature such combinatorial terminology is
being used.
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help of general result, Eq. (1.14) (which is essentially equivalent to accounting for the mirror sym-
metry) requires some explanations. We would like to provide a sketch of these explanations now.5

To this purpose we need to introduce several definitions first. We begin with

Definition 1.4. For any convex polytope P the dual polytope P ∗ is defined by

P∗ = {x ∈ (Rd)∗ | 〈a · x〉 ≤ 1, a ∈ P} (1.16)

Although in algebraic geometry of toric varieties the inequality 〈a · x〉 ≤ 1 sometimes is replaced
by 〈a · x〉 ≥ −1 [10], we shall use Eq. (1.16) to be in accord with Hibi [15]. According to this
reference, if P is rational, then P ∗ is also rational. However, P ∗ is not necessarily integral even if
P is integral. This fact is profoundly important since the result, Eq. (1.14), is valid for the integral
polytopes only. The question arises: under what conditions is the dual polytope P∗ integral? The
answer is given by the following.

Theorem 1.5 (Hibi [15]). The dual polytope P ∗ is integral if and only if

F(P, x−1) = (−1)d+1xF(P, x) (1.17)

where the generating function F(P, x) is defined earlier by Eq. (1.14).

By combining Eqs. (1.3) and (1.14) we obtain for the standard Veneziano amplitude the fol-
lowing result:

F(P, x) =
(

1

1 − x

)d+1

. (1.18)

Using it in Eq. (1.17) produces:

F(P, x−1) = (−1)d+1

(1 − x)d+1 x
d+1 = (−1)d+1xd+1F(P, x). (1.19)

This result indicates that scattering processes described by the standard Veneziano amplitudes
do not involve any mirror symmetry since, as it is well known, Refs. [14,18], in order for such
a symmetry to take place the dual polytope P ∗ must be integral. The question arises: can these
amplitudes be modified with help of Eq. (1.14) so that mirror symmetry can be in principle
observed in nature? To answer this question, let us assume that, indeed, Eq. (1.14) can be used
for such a modification. In this case we obtain

F(P, x−1) = (−1)d+1xF(P, x) (1.20)

provided that hn−i = hi in Eq. (1.14). But this is surely the case in view of the fact that these
are the Dehn–Sommerville equations, Ref. [10, p. 16]. Hence, at this stage of our discussion, it
looks like generalization of the Veneziano amplitudes which takes into account mirror symmetry
is possible from the mathematical standpoint. Mathematical arguments themself are not sufficient
however for such generalization. This is so because of the following chain of arguments.

Already in the original paper by Veneziano [19, p. 195], it was noticed that the amplitude
he defined originally is not unique. Following Ref. [20, p. 100], we notice that beta function
B(−α(s),−α(t)) in Veneziano amplitude can be replaced by

5 To keep focus of our readers on major issues of this paper, we suppress to the absolute minimum the discussion
connecting our results to experiment. We plan to discuss this connection thoroughly in a separate publication.
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B(m− α(s), n− α(t)) (1.21)

for any integersm, n ≥ 1, and similarly for s, u and t, u terms. According to Ref. [20], “Any func-
tion which can be presented as linear combination of terms like (1.21) satisfies the finite energy
sum rules, so there is no constraint on the resonance parameters unless additional assumptions
are made.” The mirror symmetry arguments presented above are such additional assumptions. To
use them wisely, we still need to make several remarks. Experimentally, the linear combination
of terms in the form given by Eq. (1.21) should show as explained in up in the form of daughter
(or satellite) Regge trajectories, Refs. [20,21]. But, according to Frampton [22], such daughter
trajectories should be present even for the standard (that is non generalized!) Veneziano ampli-
tudes. This is so because of the following arguments. In accord with analysis made in Part I, the
unsymmetrized Veneziano amplitude can be presented as

V (s, t) =
∞∑
n=0

p(α(t), n)
1

n− α(s)
. (1.22)

For a given n the polynomial p(α(t), n) is an n-th degree polynomial in α(t) (for high enough
energies in t). Since in the Regge theory n represents the total spin, according to the rules of
quantum mechanics, in addition to particles with spin n there should (could) be particles with spins
n− 1, n− 2, . . . , 1, 0. These particles should be visible (in principle) at the parallel (daughter or
satellite) trajectories all lying below the leading (with spin n) Regge trajectory. While the leading
trajectory has α(t)n as its residue, the daughter trajectories have (α(t))n−1, (α(t))n−2, etc., as
their residues. Unfortunately, in addition, the countable infinity of satellite (daughter) trajectories
can originate if the masses of colliding particles are not the same, Ref. [20, p. 40]. The linear
combination of terms given by Eq. (1.21) can account in principle for such phenomena. Following
Frampton [22], we need to take into account that the linear combination of terms in Eq. (1.21)
can be replaced (quite rigorously) by the combination of terms of the form

B(n− α(s), n− α(t)) (1.23)

with n ≥ 0. In real life the infinite number of trajectories is never observed however. But several
parent–daughter Regge trajectories are being observed quite frequently, e.g., see Ref. [20, p. 41].
If we accept the existence of mirror symmetry, these observational facts can be explained quite
naturally. To illustrate this, we would like to consider the simplest case of �� scattering described
in Refs. [12,22]. Below the threshold, that is below the collision energies producing more outgoing
particles than incoming, the unsymmetrized amplitude A(s, t) for such a process is known to be

A(s, t) = −g2Γ (1 − α(s))Γ (1 − α(t))

Γ (1 − α(s) − α(t))
= −g2(1 − α(s) − α(t))B(1 − α(s), 1 − α(t)).

(1.24)

This result should be understood as follows. Consider the “weighted” (unsymmetrized) Veneziano
amplitude of the type

A(s, t) =
∫ 1

0
dxx−α(s)−1(1 − x)−α(t)−1g(x, s, t) (1.25)

where the weight function g(x, s, t) is given by

g(x, s, t) = 1

2
g2[(1 − x)α(s) + xα(t)]. (1.26a)
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Alternatively, the same result, Eq. (1.24), is obtained if one uses instead the weight function

g(x, s, t) = g2xα(t). (1.26b)

Consider now a special case of Eq. (1.14): n = 2. For such case we obtain

F(P, x) =
∞∑
q=0

P(q, 1)xq = h0(P) + h1(P)x

(1 − x)1+1 (1.27)

so that Eq. (1.20) holds thus indicating presence of mirror symmetry. At this point our readers
might notice that, actually, for this symmetry to take place one should consider instead of amplitude
A(s, t) the following combination

A(s, t) = −g2Γ (1 − α(s))Γ (1 − α(t))

Γ (1 − α(s) − α(t))
+ g2Γ (−α(s))Γ (−α(t))

Γ (−α(s) − α(t))

= −ĝ2B(1 − α(s), 1 − α(t)) + g2B(−α(s),−α(t)). (1.28)

Such a combination produces first two terms (with correct signs) of the infinite series as proposed
by Mandelstam, Eq. (15), Ref. [23]. The comparison with experiment displayed in Fig. 6.2(a),
Ref. [22, p. 321] is quite satisfactory producing one parent and one daughter trajectory. These
are also displayed in Ref. [20, p. 41] for the “rho family”. It should be noted that in the present
case the phase factors (eliminating tachyons) discussed in Part I are not displayed since in Ref.
[24] and, therefore also in this work, we provide alternative explanation why tachyons should be
excluded from consideration.

1.4. Organization of the rest of the paper

In Section 2, using the concept of a zonotope we prove that, indeed, Eq. (1.11) (and, hence,
Eqs. (1.1) and (1.3)) is a special case of the Weyl character formula. In arriving at this result we
employ some information about the Ruelle’s dynamical transfer operator and earlier results by
Atiyah and Bott on Lefshetz-type fixed point formula for the elliptic complexes. Section 3 along
with results of Appendix A (Part II) provides necessary mathematical background to be used in
Section 4. It includes some relevant facts from the theory of toric varieties, algebraic groups,
semisimple Lie groups and associated with them Lie algebras, flag decompositions, etc. With
help of this information in Section 4 major physical applications are developed culminating in
the exact symplectic solution of the Veneziano model. Connection between the symplectic and
supersymmetric formalisms was noticed and developed in the classical paper by Atiyah and Bott
[25], whose work had been inspired by earlier result by Witten [26], on supersymmetry and Morse
theory. Thus, in view of Ref. [25], the results of Parts II and III become interrelated. The final
results obtained in this work are in formal accord with those obtained earlier by Vergne [3], by
other methods.

2. From geometric progression to Weyl character formula

2.1. From p-cubes to d-polytopes via zonotope construction

In Section 1, we have obtained Eq. (1.11). In one-dimensional case it is formally reduced to
a simple geometric progression formula. The result, Eq. (1.11), is obtained for the rational (or
integral) polytope of cubic symmetry. In this subsection we generalize this result to obtain similar
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results for rational centrally symmetric polytopes whose symmetry is other than cubic. This is
possible with help of the concept of zonotope. The concept of zonotope is not new. According to
Coxeter [27], it belongs to the 19th century Russian crystallographer Fedorov. Nevertheless, this
concept has been truly appreciated only relatively recently in connection with oriented matroids.
For the purposes of this work it is sufficient to consider only the most elementary properties of
zonotopes. Thus, following Ref. [28], let us consider a p-dimensional cube Cp defined by

Cp = {x ∈ Rp, −1 ≤ xi ≤ 1, i = 1 − p} (2.1)

and the surjective map π : Rp → Rd . The map is defined via the following.

Definition 2.1. A zonotope Z(V ) is the image of a p-cube, Eq. (2.1), under the affine projection
π. Specifically:

Z ≡ Z(V ) = VCp + z = {Vy + z : y ∈ Cp} = {x ∈ Rd : x

= z+
p∑
i=1

xivi, −1 ≤ x ≤ 1}

for some matrix (vector configuration) V = {v1, . . . , vp}.
By construction, such an image is a centrosymmetric d-polytope [28]. Below, we shall obtain

some results for these d-polytopes. By construction, they should hold also for p-cubes. In such
a way we shall demonstrate that, indeed, Eq. (1.11) can be associated with the Weyl character
formula.

2.2. From Ruelle dynamical transfer operator to Atiyah and Bott Lefschetz-type fixed point
formula for the elliptic complexes

Any classical dynamical system can be thought of as the pair (M, f) with f being a map f:
M → M from the phase spaceM to itself. Following Ruelle [29], we consider a map f:M → M
and a scalar function (a weight function) g: M → C. Based on these data, the transfer operator
L can be defined as follows:

L�(x) =
∑
y:fy=x

g(y)�(y). (2.2)

If L1 and L2 are two such transfer operators associated with some successive maps f1, f2:
M → M and weights g1 and g2 then

(L1L2�)(x) =
∑

y:f2f1y=x
g2(f1y)g1(y)�(y). (2.3)

It is possible to demonstrate that

trL =
∑

x∈Fix f

g(x)

| det(1 −Dxf−1(x))| (2.4)

with Dxf being derivative of f acting in the tangent space TxM and the graph of f is required to
be transversal to the diagonal � ⊂ M × M. Eq. (2.4) coincides with that obtained in the work
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by Atiyah and Bott [30].6 In connection with Eq. (2.4), these authors make several important (for
purposes of this work) observations to be discussed now. In Ref. [29] Ruelle essentially uses the
same type of arguments as those by Atiyah and Bott [30]. These are given as follows. Define the
local Lefschetz index Lx(f ) by

Lx(f ) = det(1 −Dxf (x))

| det(1 −Dxf (x))| , (2.5)

where x ∈ Fix f . Then define the global Lefschetz index L(f ) by

L(f ) =
∑
f (x)=x

Lx(f ). (2.6)

Taking into account that det(1 −Dxf (x)) =∏d
i=1(1 − αi), where αi are the eigenvalues of the

Jacobian matrix, the determinant can be rewritten in the following useful form, Ref. [31, p. 133]:

det(1 −Dxf (x)) =
d∏
i=1

(1 − αi) =
d∑
k=0

(−1)kek(α1, . . . , αd), (2.7)

where the elementary symmetric polynomial ek(α1, . . . , αd) is defined by

ek(α1, . . . , αd) =
∑

1≤i1<···<ik≤d
αi1 , . . . , αik (2.8)

with ek=0 = 1. With help of these results the local Lefschetz index, Eq. (2.5), can be rewritten
alternatively as follows:

Lx(f ) =
∑d
k=0(−1)kek(α1, . . . , αd)

| det(1 −Dxf (x))| ≡
∑d
k=0(−1)ktr(∧kDxf (x))

| det(1 −Dxf (x))| (2.9)

with ∧k denoting the k-th power of the exterior product. Using this result, Ruelle [29] defined
additional transfer operator L(k) (analogous to earlier introduced L) as follows:

trL(k) =
∑

x∈Fix f

g(x)tr(∧kDxf (x))

| det(1 −Dxf−1(x))| . (2.10)

In view of Eqs. (2.5)–(2.10), we also obtain

d∑
k=0

(−1)ktrL(k) =
∑

x∈Fix f
g(x)Lx(f ). (2.11)

If in the above formulas we replace Fix f by Fix fn, we have to replace trL(k) by trL(k)
n . Next,

since

exp

( ∞∑
n=1

tr(An)

n
tn

)
= [det(1 − tA)]−1 (2.12)

6 They useDxf instead ofDxf−1 which makes no difference for the fixed points and invertible functions. The important
(for chaotic dynamics) non invertible case is discussed by Ruelle also but the results are not much different.
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it is convenient to combine this result with Eq. (2.10) in order to obtain the following dynamical
zeta function:

Z(t) = exp

( ∞∑
n=1

tn

n

{
d∑
k=0

(−1)ktrL(k)
n

})
=

d∏
k=0

[
exp

( ∞∑
n=1

trL(k)
n

n
tn

)](−1)k

=
d∏
k=0

[det(1 − tL(k))](−1)k+1
. (2.13)

This final result coincides with that obtained by Ruelle as required. Thus obtained zeta function
possess dynamical, number-theoretic and algebro-geometric interpretation. Looking at Eq. (1.1),
it should be clear that for the appropriately chosen d and L Eqs. (1.1) and (2.13) can be made
the same. Moreover, based on the paper by Atiyah and Bott [30], we would like to demonstrate
that Eq. (2.4) is actually the same thing as the Weyl’s character formula [32]. To prove that this
is indeed the case is not entirely trivial. In what follows, we shall assume that our readers are
familiar with results and notations of Part II and, especially, with the results of Appendix A to
Part II. To avoid duplications, we shall use below results on the Weyl–Coxeter reflection groups
using notations from this appendix.7

2.3. From Atiyah–Bott–Lefschetz fixed point formula to character formula by Weyl

We begin with observation that Eqs. (2.4) and (1.11) are equivalent. Because of this, it is
sufficient to demonstrate that the right-hand side of Eq. (1.11) indeed coincides with the Weyl’s
character formula. Although Eq. (1.11) (and, especially, Eqs. (2.3) and (2.10)) looks similar to
that obtained in the paper by Atiyah and Bott (AB), Ref. [30, Part I, p. 379], leading to the Weyl
character formula, Eq. (5.12) of Ref. [30, Part II],8 neither Eq. (1.11) nor Eq. (5.11) of AB paper
[30, Part II] provide immediate connection with their Eq. (5.12). Hence, the task now is to restore
some missing links.

To this purpose we need to recall some facts from the book by Bourbaki [32]. These facts
are also helpful in the remainder of this paper. In particular, let us consider a finite set of
formal symbols e(µ) possessing the same multiplication properties as the usual exponents,9

i.e.

e(µ)e(ν) = e(µ+ ν), [e(µ)]−1 = e(−µ) and e(0) = 1. (2.14)

Such defined set of formal exponents is making a free Z module with the basis e(µ). Subsequently,
we shall require that µ ∈ �with� being the Weyl root system defined in the Appendix. Suppose
also that we are given a polynomial ring A[X] made of all linear combinations of terms Xn ≡
X
n1
1 , . . . , X

nd
d withni ∈ Z andXi being some indeterminates. Then, one can construct another ring

A[P] made of linear combinations of elements e(p · n) with p · n = p1n1 + · · · + pdnd . Clearly,
the above rings are isomorphic as it was explained in Part II, Section 9. Let x =∑p∈P xpe(p) ∈

7 To shorten notations we shall write “Appendix” having in mind the Appendix A of Part II.
8 It should be taken into account that the AB paper also has Parts I and II.
9 In the case of usual exponents it is being assumed that all the properties of formal exponents are transferable to the

usual ones.
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A[P] with P = {p1, . . . , pd}. Then using Eq. (2.14) we obtain:

x · y =
∑
s∈P

xse(s)
∑
r∈P

yre(r) =
∑
t∈P

zte(t) with zt =
∑
s+r=t

xsyr and, accordingly,

xm =
∑
t∈P

zte(t) with zt =
∑

s+···+r=t
xs, . . . , yr,m ∈ N (2.15)

with N being some non-negative integer. Introduce now the determinant of w ∈ W via rule:

det(w) ≡ ε(w) = (−1)l(w), (2.16)

where, again, we use notations from Appendix. If, in addition, we would require

w(e(p)) = e(w(p)), (2.17)

then all elements of the ring A[P] are subdivided into two classes defined by

w(x) = x(invariance) (2.18a)

and

w(x) = ε(x) · x(anti invariance). (2.18b)

These classes are very much like subdivision into bosons and fermions in quantum mechanics.10

All anti invariant elements can be built from the basic anti invariant element J(x) which, in view
of Eq. (2.7), can defined by

J(x) =
∑
w∈W

ε(w) · w(x). (2.19)

From the definition of the set P and from Appendix it should be clear that the set P can be identified
with the set of reflection elementsw of the Weyl group W. Therefore, for all x ∈ A[P] andw ∈ W
we obtain the following chain of equalities:

w(J(x)) =
∑
v∈W

ε(v) · w(v(x)) = ε(w)
∑
v∈W

ε(v) · v(x) = ε(w)J(x) (2.20)

as required. Accordingly, any anti invariant element x can be written as x =∑l∈P xpJ(exp(p)).
The denominator of Eq. (1.11), when properly interpreted with help of Appendix, can be associated
with J(x). Indeed, without loss of generality let us choose the constant c as c = {1, . . . , 1}. Then,
for the fixed v the denominator of Eq. (1.11) can be rewritten as follows:

d∏
i=1

(1 − exp{−uvi }) ≡
∏
α∈�+

(1 − exp(−α)) ≡ d̃ exp(−ρ), (2.21)

where

ρ = 1
2

∑
α∈�+

α and

d̃ =
∏
α∈�+

(
exp

(α
2

)
− exp

(
−α

2

))
.

(2.22)

10 Such analogy is not superficial as we have noticed already in Part II.
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To prove that thus defined d̃ belongs to the anti invariant subset of A[P] is not difficult. Indeed,
consider the action of a reflection ri on d̃. Taking into account that ri(αi) = −αi we obtain

ri(d̃) =
(

exp
(
−αi

2

)
− exp

(αi
2

)) ∏
α�=αi
α∈�+

(
exp

(α
2

)
− exp

(
−α

2

))
= −d̃ ≡ ε(ri)d̃.

(2.23)

Hence, clearly

d̃ =
∑
p∈P

xpJ(exp(p)). (2.24)

Moreover, it can be shown [32], that d̃ = J(exp(ρ)) which, in view of Eqs. (2.21) and (2.22),
produces identity originally obtained by Weyl:

d̂ exp(−ρ) =
∏
α∈�+

(1 − exp(−α)). (2.25)

Applying reflection w to the above identity while taking into account Eqs. (2.17) and (2.23)
produces:∏

α∈�+
(1 − exp(−w(α))) = exp(−w(ρ))ε(w)d̂. (2.26)

The result just obtained is of central importance for the proof of the Weyl’s formula. Indeed, in
view of Eqs. (2.17) and (2.26), inserting the identity 1 = w

w
into the sum over the vertices on the

right-hand side of Eq. (1.11) and taking into account that, (a) ε(w) = ±1 so that [ε(w)]−1 = ε(w),
(b) actually, the sum over the vertices is the same thing as the sum over the members of the Weyl–
Coxeter group (since all vertices of the integral polytope can be obtained by using the appropriate
reflections applied to the highest weight vector pointing to a chosen vertex), we obtain the Weyl’s
character formula:

trL(λ) = 1

d̂

∑
w∈�

ε(w) exp{w(λ+ ρ)}. (2.27)

It was obtained with help of the results of Appendix, Eqs. (2.4), (2.17) and (2.26). Looking at the
left-hand side of Eq. (1.11) we can replace trL(λ) by the sum in the left-hand side of Eq. (1.11) if
we choose the constant c as before. Doing this is not too illuminating however as we would like
to explain now.

Indeed, since by construction J(x) in Eq. (2.19) is the basic anti invariant element and the
right-hand side of Eq. (2.27) is by design manifestly invariant element of the A[P], it is only
natural to look for the basic invariant element analogue of J(x). Then, in view of Eq. (2.15) (and
discussion preceding this equation), trL(λ) ≡ χ(λ) should be expressible as follows:

χ(λ) =
∑
w∈W

nw(λ) e(w). (2.28)

The factor nw(λ) in Eq. (2.28) is known in group theory as the Kostant’s multiplicity formula
[33]. It plays an important role in our work, especially in Section 4. To calculate it explicitly,
Cartier [34] simplified the original derivation by Kostant. In view of simplicity of his arguments,
we would like to reproduce them having in mind their later use in the text. Cartier noticed that
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the denominator of the Weyl character formula, Eq. (2.27), can be formally expanded with help
of Eq. (2.25) as follows:

[
exp(ρ)

∏
α∈�+

(1 − exp(−α))

]−1

=
∑
w′∈W

P(w′)e(−ρ − w′). (2.29)

By combining Eqs. (2.27)–(2.29) we obtain,∑
w∈W

nw(λ) e(w) =
∑
w∈W

ε(w) exp{w(λ+ ρ)}
∑
w′∈W

P(w′)e(−ρ − w′). (2.30)

Comparing the left-hand side with the right-hand side in the above expression we obtain finally
the Kostant multiplicity formula:

nw(λ) =
∑
w′∈W

ε(w′)P(w′(λ+ ρ) − (ρ + w)). (2.31)

The obtained formula allows us to determine the density of states nw(λ). Provided that the function
P is known explicitly, the obtained formula allows us to determine the factor nw(λ).

It is useful to rewrite these results in physical language. In particular, for any quantum me-
chanical system, the partition function � can be written as

� =
∑
n

gn exp{−βEn} ≡ tr(exp(−βĤ)) (2.32)

where Ĥ is the quantum Hamiltonian of the system, β the inverse temperature and gn is the
degeneracy factor. Clearly, using Eqs. (2.27) and (2.28), one can identify � with χ(λ). Next we
introduce the density of states ρ(E) via

ρ(E) =
∑
n

gnδ(E − En). (2.33)

Comparison between Eqs. (2.31) and (2.33) suggests that the function P can be identified with
the density of states. Using ρ(E) the partition function � can be written as the Laplace transform

�(β) =
∫ ∞

0
dEρ(E) exp{−βE}. (2.34)

Clearly, Eq. (2.28) is just the discrete analogue of Eq. (2.34) so that it does have a statisti-
cal/quantum mechanical interpretation as partition function. From condensed matter physics it is
known that all important statistical/quantum information is contained in the density of states. Its
calculation is of primary interest in physics. Evidently, the same is true in the present case.

In the light of results just obtained, we can reinterpret some results from the Introduction.
In particular, the right-hand side our Eq. (1.11), when compared with the right-hand side of
Eq. (5.11) of AB paper [30, Part II], is not looking the same. We would like to explain that,
nevertheless, these expressions are equivalent. For comparison, let us reproduce Eq. (5.11)
of AB paper first. Actually, for this purpose it is more convenient to use the paper by Bott
[35], (his Eq. (28)). In notations taken from this reference, Eq. (5.11) by AB is written now
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as follows:

trace Tg =
∑
w∈W
α<0

[
λ∏

(1 − α)

]w
. (2.35)

Comparing this result with the right-hand side of our Eq. (1.11) and taking into account Eq. (2.17),
the combination λw in the numerator of Eq. (2.35) is the same thing as exp{wλ} in Eq. (2.27). As
for the denominator, Bott uses the same Eq. (2.25) as we do so that it remains to demonstrate that[ ∏

α∈�+
(1 − exp(−α))

]w
= exp(−w(ρ)) ε(w)d̂. (2.36)

In view of Eq. (2.25), we need to demonstrate that[
d̂ exp(−ρ)

]w = exp(−w(ρ))ε(w)d̂, (2.37)

i.e. that [d̂]w = ε(w)d̂. Looking at Eq. (2.23), this requires us to assume that [d̂]w = wd̂. But, in
view of Eqs. (2.17), (2.19) and (2.24), we conclude that this is indeed the case. This proves the
fact that Eq. (2.35), that is Eq. (5.11) of Ref. [30], is indeed the same thing as the Weyl’s character
formula, Eq. (5.12) of Ref. [30], or, equivalently, Eq. (2.27) above. According to Kac [36, p. 174],
the classical Weyl character formula, Eq. (2.27), is formally valid for both finite dimensional
semisimple Lie algebras and infinite dimensional affine Kac–Moody algebras. This circumstance
and the Proposition A.1 of Appendix play important motivating role for developments in our
work.

Remark 2.2. Although our arguments thus far have been limited only to (comparison with) the
d-dimensional hypercube, this deficiency is easily correctable with help of the concept of zonotope
introduced in Section 2.1. Clearly, because of zonotope construction the obtained results remain
correct for any centrally symmetric polytope P. Thus, we have demonstrated that Eq. (1.11) has
essentially the same meaning as the Weyl character formula.

Remark 2.3. In view of Eqs. (2.22) and (2.35) the denominator d̂ in the Weyl character formula,
Eq. (2.27), is actually a determinant. This means that the basic anti invariant J(x) introduced in Eq.
(2.19) is determinant. But the right-hand side of Eq. (2.27) is invariant. This is possible only if the
numerator of the Weyl character formula is also a determinant. Hence, the Weyl character formula
is essentially the ratio of determinants. Since this is surely the case, it implies that the Ruele zeta
function, Eq. (2.13) is also essentially the Weyl character formula.11 This, in turn, implies that our
major result for the Veneziano partition function, Eq. (1.1), is essentially also the Weyl character
formula in accord with Lerche et al. [4], where such conclusion was obtained differently.

The fact that Eq. (1.1) can be interpreted as the Weyl character formula should not be too
surprising in view of the fact that the left-hand side of Eq. (1.1) denotes the Poincare polynomial
which is group invariant. It remains to demonstrate that the torus action group introduced in Part
II can be interpreted as the Weyl–Coxeter reflection group. This is done below, in Section 3. In
the meantime, we have not exhausted all consequences of the results we have just obtained. In

11 That this is the case for dynamical systems can be deduced, based on our arguments, from the monograph by Feres
[37]. We shall not develop this line of thought in this paper having in mind different goals.
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particular, if it is true that Eq. (1.11) is the Weyl character formula, then, taking into account Eq.
(2.28), we conclude that Eq. (1.7) is the Kostant multiplicity formula for d-dimensional cube. The
rigorous proof of this fact for the arbitrary convex polytope can be found in Refs. [33,38,39]. If
this is so, then Eq. (1.2) is also the Kostant multiplicity formula providing the number of points
inside the inflated (with inflation factor q) simplex q�n (living in Zn lattice) and at its boundaries.
These observations allow us to develop symplectic methods for reconstruction of the Veneziano
partition function to be discussed below in Section 4.

Remark 2.4. From the point of view of algebraic geometry of toric varieties [40–42], the
Kostant multiplicity formula has yet another (topological) interpretation as the Euler char-
acteristic χ of the projective toric variety associated with the polytope P. This fact will be
discussed in some detail below, in Sections 3.4 and 4. It motivates us to develop symplec-
tic formulation of the Veneziano partition function in Section 4 and supersymmetric formu-
lation discussed in Part II. Connections between the Weyl character formula and the Euler
characteristic for projective algebraic varieties had been uncovered by Nielsen [43], already
in 1976. His work is based on still earlier work by Iversen and Nielsen [44]. Below we shall
argue that, actually, the idea of such connection can be traced back to still much earlier pa-
pers by Hopf [45], and Hopf and Samelson [46]. In Section 3.4, we provide the topological
interpretation of the Kostant multiplicity formula in terms of χ based on ideas of Hopf and
Samelson.

3. The torus action and the moment map

3.1. The torus action and the Weyl group

To avoid duplications, in writing this and following subsections we shall assume that our readers
are familiar with our earlier work, Part II. Hence, in this part we only introduce terminology which
is of immediate use. To begin, let us consider a polynomial

f (z) = f (z1, . . . , zn) =
∑

i

λizi =
∑

i

λi1,...,inz
i1
1 , . . . , z

in
n , (λi, z

im
m ∈ C, 1 ≤ m ≤ n).

(3.1)

It belongs to the polynomial ring A[z] (essentially isomorphic to earlier introduced A[X]) closed
under ordinary addition and multiplication. Since now we are using complex numbers (instead of
indeterminates as in Section 2.3) this allows us to introduce the following:

Definition 3.1. An affine algebraic variety V ∈ Cn is the set of zeros of the collection of poly-
nomials from the ring A[z].

According to the famous Hilbert’s Nullstellensatz a collection of such polynomials is finite
and forms the set I(z) := {f ∈ A[z], f (z) = 0} of maximal ideals usually denoted Spec A[z].

Definition 3.2. The zero set of a single function belonging to I(z) is called algebraic hypersurface
so that the set I(z) corresponds to the intersection of a finite number of hypersurfaces.

As in Part II, we need to consider the set of Laurent monomials of the typeλzα ≡ λz
α1
1 , . . . , z

αn
n .

We shall be particularly interested in the monic monomials for which λ = 1. Such monomials
form a closed polynomial subring with respect to usual multiplication and addition. The crucial
step forward is to assume that the exponent α ∈ Sσ .12 This allows us to define the following

12 Although the monoid Sσ was defined in Part II, for reader’s convenience it will be redefined below momentarily.
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mapping

ui := zai (3.2)

with ai being one of the generators of the monoid Sσ and z ∈ C. In order to define the monoid
Sσ we still need to provide a couple of definitions. In particular, recall that a semi-group S that
is a non-empty set with associative operation is called monoid if it is commutative, satisfies
cancellation law (i.e. s+ x = t + x implies s = t for all s, t, x ∈ S) and has zero element (i.e.
s+ 0 = s, s ∈ S). This allows us to make the following:

Definition 3.3. A monoid S is finitely generated if exist a set a1, . . . , ak ∈ S, called generators,
such that

S = Z≥0a1 + · · · + Z≥0ak. (3.3)

Taking into account this definition, it is clear that the monoid Sσ = σ ∩ Zd for the rational poly-
hedral cone σ (e.g. read Part II) is finitely generated.

The mapping given by Eq. (3.2) provides an isomorphism between the additive group of
exponents ai and the multiplicative group of monic Laurent polynomials. Next, the function φ is
considered to be quasi homogenous of degree d with exponents l1, . . . , ln if

φ(λl1x1, . . . , λ
lnxn) = λdφ(x1, . . . , xn), (3.4)

provided that λ ∈ C∗. Applying this result to za ≡ z
a1
1 , . . . , z

an
n we obtain equation analogous to

Eq. (3.3) for the polyhedral cone:∑
j

(lj)iaj = di. (3.5)

Clearly, if the index i is numbering different monomials, then the sum di belongs to the monoid Sσ .
The same result can be achieved if instead we would consider the products of the type ul11 , . . . , u

ln
n

and rescale all z′is by the same factor λ. Eq. (3.5) should be understood as a scalar product with
(lj)i living in the space dual to a′

js. Accordingly, the set of (lj)′is can be considered as the set of
generators for the dual cone σ∨. Next, in view of Eq. (3.2), let us consider the polynomials of the
type

f (z) =
∑
a∈Sσ

λaza =
∑

l

λlul. (3.6)

As before, they form a polynomial ring. The ideal for this ring is constructed based on the
observation that for the fixed di and the assigned set of cone generators ai there is more than one
set of generators for the dual cone. This redundancy produces relations of the type

u
l1
1 , . . . , u

lk
k = u

l̃1
1 , . . . , u

l̃k
k . (3.7)

If now we require ui ∈ Ci, then it is clear that the above equation belongs to the ideal I(z) of the
above polynomial ring and that Eq. (3.7) represents the hypersurface in accord with Definitions 3.1
and 3.2. As before, the ideal I(z) represents the intersection of these hypersurfaces thus forming
the affine toric variety Xσ∨ . The generators {u1, . . . , uk} ∈ Ck are coordinates for Xσ∨ . They
represent the same point in Xσ∨ if and only if ul = ul̃. Thus formed toric variety corresponds to
just one (dual) cone. A complex algebraic torus T is defined by the rule T := (C\0)n =: (C∗)n. It
acts on the affine toric variety X� (made out of pieces Xσ∨ with help of a gluing map) according
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to the prescription: T ×X� → X�, provided that at each affine variety corresponding to the dual
cone σ∨ its action is given by

T ×Xσ∨ → Xσ∨ , (t, x) �→ tx := (ta1x1, . . . , t
akxk). (3.8)

To proceed, we us replace temporarily T by the group G acting (multiplicatively) on the set X via
the rule:G×X → X, i.e. (g, x) → gx, provided that for all g, h ∈ G, g(hx) = (gh)x and ex = x

for some unit element e of G.

Definition 3.4. The subset Gx := {gx | g ∈ X} of X is called the orbit of x. The subgroup H :=
{gx = x | g ∈ X} of G that fixes x is the isotropy group. There could be more than one fixed point
for the equation gx = x. All of them are conjugate to each other.

Definition 3.5. A homogenous space for G is the subspace of X on which G acts without fixed
points.

The major step forward can be made by introducing the concept of an algebraic group [47].

Definition 3.6. A linear algebraic group G is (a) an affine algebraic variety and (b) a group in
the sense given above, i.e.

µ : G×G → G;µ(x, y) = xy (3.9a)

i : G → G; ι(x) = x−1. (3.9b)

Remark 3.7. It can be shown, Ref. [48, p. 150], that G as a linear algebraic group is isomorphic
to a closed subgroup of GLn(K) for some n ≥ 1 and any closed number field K such as C or
p-adic. This fact plays the central role in whole development presented below.

Consider therefore an action of G on f (z) defined by Eq. (3.6). Following Stanley [13], it can
be defined asM ◦ f (z) = f (Mz) for some matrix M such thatM ∈ G. In order for this definition
to be compatible with earlier made, Eq. (3.8), we have to assume that the torus T acts diagonally
on the vector space spanned by x1, . . . , xn. This means that the isotropy group of the torus is
defined by the set of the following equations

taixi = xi. (3.10)

Apart from trivial solutions: xi = 0 and xi = ∞, there are nontrivial solutions: tai = 1∀xi. For
integer a′

is this are cyclotomic equations whose ai − 1 solutions all lie on the circle (e.g. see Part
I, Section 3.1). This result is easy to understand since the algebraic torus T has the topological
torus as a deformation retract while the topological torus is just a Cartesian product of circles.

Next, we notice that Eq. (3.8) still makes sense if some of t-factors are replaced by 1s. This
means that one should take into account situations when one, two, etc., t-factors in Eq. (3.8)
are replaced by 1s and account for all permutations involving such cases. This observation leads
to the torus actions on toric subvarieties. It is important that different orbits belong to different
subvarieties which do not overlap. Thus, by design, X� is the disjoint union of finite number of
orbits identified with the subvarieties of X�. Under such circumstances the vector (x1, . . . , xk)
forms a basis of k-dimensional vector space V so that the vector (x1, . . . , xi), i ≤ k, forms a basis
of the subspace Vi. This allows us to introduce a complete flag f0 of subspaces in V via

f0 : 0 = V0 ⊂ V1 ⊂ . . . ⊂ Vk = V. (3.11)
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Consider now an action of G on f0. Taking into account Remark 3.7., we recognize that effectively
G = GLn(K). The matrix representation of this group possess remarkable properties. These are
summarized in the following definitions.

Definition 3.8. Given that the set GLn(K) = {x ∈ Mn(K) | det x �= 0} with Mn(K) being n× n

matrix with entries xi,j ∈ K forms a general linear group, the matrix x ∈ Mn(K) is (a) semisimple
(x = xs), if it is diagonalizable, that is ∃g ∈ GLn(K) such that gxg−1 is a diagonal matrix; (b)
nilpotent (x = xn) if xm = 0, that is for some positive integer m all eigenvalues of the matrix xm

are zero; (c) unipotent (x = xu), if x− 1n is nilpotent, i.e. x is the matrix whose only eigenvalues
are 1’s.

Just like with the odd and even numbers the above matrices, if they exist, form closed disjoint
subsets of GLn(K), e.g. all x, y ∈ Mn(K) commute; if x, y are semisimple so is their sum and
the product, etc. Most important for us is the following fact:

Proposition 3.9. Let x ∈ GLn(K). Then ∃xu and xs such that x = xsxu = xuxs. Both xs and xu
are determined by the above conditions uniquely.

The proof can be found in Ref. [49, p. 96]. This proposition is in fact a corollary of the
Lie–Kolchin theorem which is of major importance for us. To formulate this theorem we need
to introduce yet another couple of definitions. In particular, if A and B are closed (finite)
subgroups of the algebraic group G one can construct the group (A,B) made of commuta-
tors xyx−1y−1, x ∈ A, y ∈ B. With help of such commutators the following definition can be
made.

Definition 3.10. The group G is solvable if its derived series terminates in the unit element e.
The derived series is being defined inductively by D(0)G = G,D(i+1)G = (D(i)G,D(i)G), i ≥ 0.

Such a definition implies that the algebraic group G is solvable if and only if there exists a
chain G = G(0) ⊃ G(1) ⊃ · · ·G(n) = e for which (G(i),G(i)) ⊂ Gi+1 (0 ≤ i ≤ n), Ref. [49, p.
111]. Finally,

Definition 3.11. The group is called nilpotent if E (n)G = e for some n, where E (0) = G, E (i+1) =
(G, E (i)G).

Such a group is represented by the nilpotent matrices. Based on this definition, it is possible to
prove that every nilpotent group is solvable [40, p. 112]. These results lead us to the Lie–Kolchin
theorem of major importance:

Theorem 3.12 (Lie and Kolchin [49, p. 113]). Let G be connected solvable algebraic group
acting on a projective variety X. Then G has a fixed point in X.

In view of Remark 3.7, we know that such G is a subgroup of GLn(K). Moreover, GLn(K)
has at least another subgroup, called semisimple, for which Theorem 3.12 does not hold. In this
case we have the following definition.

Definition 3.13. The group G is semisimple if it has no closed connected commutative normal
subgroups other than e.

Such a group is represented by the semisimple, i.e. diagonal (or torus), matrices while the
members of the unipotent group are represented by the upper triangular matrices with all diagonal
entries being equal to 1. In view of Theorem 3.12, the unipotent group is also solvable and,
accordingly, there must be an element B of such a group fixing the flag f0 defined by Eq. (3.11), i.e.
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Bf0 = f0. Let now g ∈ GLn(K). Then, naturally, gf0 = f where f �= f0. From here we obtain,
f0 = g−1f . Next, we obtain as well, Bg−1f = g−1f and, finally, gBg−1f = f . Based on these
results, it follows that gBg−1 = B̃ is also an element ofGLn(K) fixing the flag f, etc. This means
that all such elements are conjugate to each other and form the Borel subgroup. We shall denote
all elements of this sort by B. These are made of upper triangular matrices belonging toGLn(K).
Surely, such matrices satisfy Proposition 3.9. The quotient group G/B will act transitively on X.
Since this quotient is also a linear algebraic group, it is as well a projective variety called the flag
variety, Ref. [48, p. 176].

Remark 3.14. The flag variety is directly connected with the Schubert variety, Ref. [50, p. 124].
The Schubert varieties were considered earlier, in our work, Ref. [51], in connection with the
exact combinatorial solution of the Kontsevich–Witten (K–W) model. Hence, the above remark
naturally leads us to the combinatorial approach to problems we are discussing in this part of our
work and in Part IV. Additional details on connections with K–W model will become apparent in
Section 4.

By now it should be clear that the group G is made out of at least two subgroups: B, just
described, and N. The maximal torus T subgroup of G can be defined now as T = B ∩N. This
fact allows us to define the Weyl group:W = N/T . Although this group has the same name as that
discussed in the Appendix, its true meaning in the present context requires some explanations.
They will be provided below.

This is done in several steps. First, using results of appendix we notice that the “true” Weyl
group is made of reflections, i.e. involutions of order 2. Following Tits [32], we introduce a
quadruple (G,B,N, S) (the Tits system) where S is the subgroup of W made of elements such
that S = S−1 and 1 /∈ S. Such a subroup always exists for the compact Lie groups considered as
symmetric spaces. Then, it can be shown thatG = BWB (Bruhat decomposition) and, moreover,
that the Tits system is isomorphic to the Coxeter system, i.e. to the Coxeter reflection group. The
full proof can be found in the monograph by Bourbaki [32], Chr. 6, paragraph 2.4.

Second, since W = N/T , it is of interest to see the connection (if any) between W and the
quotient G/B = BWB/B = [B(N/T )B]/B. In view of the fact that T = B ∩N, suppose that N
commutes with B. Then we would have G/B � (N/T )B and, since B fixes the flag f, we are
left with the action of N on the flag. In view of the rule: M ◦ f (z) = f (Mz), and noticing that
the diagonal matrix T (the centralizer) can be chosen as a reference (identity) transformation,
we conclude that the commuting matrix N (the normalizer) should permute tai . Consider an
application of this rule to the monomial ul = u

l1
1 , . . . , u

ln
n ≡ z

l1a1
1 , . . . , zln1an

n . For such a map the
character c(t) is given by

c(t) = t〈l·a〉, (3.12)

where, in accord with Eq. (3.5), 〈l · a〉 =∑i liai with both li and ai being some integers. Following
Ref. [52], let us consider the limit t → 0 in the above expression. Clearly, we obtain:

c(t) =
{

1 if 〈l · a〉 = 0

0 if 〈l · a〉 �= 0
. (3.13)

Evidently, the equation 〈l · a〉 = 0 describes a hyperplane or, better, a set of hyperplanes for a
given vector a. In view of Eq. (3.5), such a set forms at least one polyhedral cone (or chamber
in the terminology of Appendix). These results can be complicated a little bit by introducing a
subset I ⊂ {1, . . . , n} such that, say, only those l′is which belong to this subset satisfy 〈l · a〉 = 0.
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Naturally, one obtains the one-to-one correspondence between such subsets and earlier defined
flags. Clearly, the set of such constructed monomials forms an invariant of the torus group action
as discussed in Part II. It remains to demonstrate that the Weyl group W = N/T permutes ai’s
thus forming an orbit transitively “visiting” different hyperplanes. This will be demonstrated
momentarily. Before doing this, we would like to change the rules of the game slightly.13 To this
purpose, we would like to replace the limiting t → 0 procedure by the procedure requiring t → ξ

with ξ being the nontrivial n-th root of unity. After such a replacement we are entering the domain
of the pseudo-reflection groups discussed in Part II. Thus, replacing t by ξ causes us to change
the rule, Eq. (3.13), as follows:

c(ξ) =
{

1 if 〈l · a〉 = 0 mod n

0 if 〈l · a〉 �= 0
. (3.14)

At this point it is appropriate to recall Eq. (I, 3.11a). In view of this equation, we shall call the
equation 〈l · a〉 = n as the Veneziano condition while the Kac–Moody–Bloch–Bragg (K–M–B–B)
condition, Eq. (I, 3.22), can be written now as 〈l · a〉 = 0 mod n.

The results of Appendix indicate that the first option (the Veneziano condition) is characteristic
for the standard Weyl–Coxeter (pseudo) reflection groups while the second is characteristic for
the affine Weyl–Coxeter groups thus leading to the Kac–Moody affine Lie algebras as discussed
in Part II.

At this moment we are ready to demonstrate that W = N/T is indeed the Weyl reflection
group. Even though the full proof can be found, for example, in the monograph by Bourbaki [32],
still it is instructive to provide qualitative arguments exhibiting the essence of the proof (different
from that given by Bourbaki who use the Tits system).

Let us begin with an assembly of (d + 1) × (d + 1) matrices with complex coefficients. They
belong to the group GLd+1(C). Consider a subset of all diagonal matrices and, having in mind
physical applications, let us assume that the diagonal entries are made of n-th roots of unity
ξ. Taking into account the results on pseudo-reflection groups as discussed in Appendix, each
diagonal entry can be represented by ξk with 1 ≤ k ≤ n− 1 so that there are (n− 1)d+1 different
diagonal matrices-all commuting with each other. Among these commuting matrices we would
like to single out those which have all ξk

′
s the same. Evidently, there are n− 1 of them. They

are effectively the unit matrices and they are forming the centralizer of W. The rest belongs to
the normalizer.14 The number (n− 1)d+1/(n− 1) = (n− 1)d was obtained earlier, e.g. see the
discussion which follows Eq. (1.7) (and replace 2m by n) and the discussion which follows this
equation. This is not just a mere coincidence. In the next section we shall provide some refinements
of this result motivated by physical considerations. It should be clear already that we are discussing
only the simplest possibility (of cubic symmetry) for the sake of illustration of general principles.
Clearly, the zonotope construction, introduced earlier allows us to transfer our reasoning to more
general cases.

Next, let us consider just one of the diagonal matrices T̃ whose entries are all different and are
made of powers of ξ. Let g ∈ GLd+1(C) and consider an automorphism: F(T̃ ) := gT̃ g−1. Along
with it, we would like to consider an orbitO(T̃ ) := gT̃C where C is any of the diagonal matrices

13 Such change of rules is consistent with arguments by Kirillov to be discussed in the next subsection.
14 As with Eq. (3.12), one can complicate matters by considering matrices which have several diagonal entries which

are the same. Then, as before, one should consider the flag system where in each subsystem the entries are all different.
The arguments applied to such subsystems will proceed the same way as in the main text.
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belonging to earlier discussed centralizer.15 Clearly, O(T̃ ) = gT̃ g−1gC = F(T̃ )gC = F(T̃ )C.
Denote now T̃ = T̃1 and consider another matrix T̃2 belonging to the same set and suppose
that there is such matrix g12 that T̃2C = F(T̃ )C. If such a matrix exists, it should belong to
the normalizer and, naturally, the same arguments can be used to T̃3, etc. Hence, the following
conclusions can be drawn. If we had started with some element T̃1 of the maximal torus, the orbit
of this element will return back and intersect the maximal torus in finite number of points (in our
case the number of points is exactly (n− 1)d). By analogy with the theory of dynamical systems,
we can consider these intersection points of the orbit O(T̃ ) with the T-plane as the Poincare′
crossections. Hence, as it is done in the case of dynamical systems (e.g. see Section 2.2), we have
to study the transition map between these crossections. The orbit associated with such a map is
precisely the orbit of the Weyl group W. It acts on these points transitively [49, p. 147], as required.
Provided that the set of fixed point exists, such arguments justify the dynamical interpretation of
the Weyl’s character formula presented in Section 2.2. The fact that such fixed point set does exist is
guaranteed by the Theorem 10.6. by Borel [47]. Its proof relies heavily on the Lie–Kolchin theorem
(our Theorem 3.12).

3.2. Coadjoint orbits

Thus far we were working with the Lie groups. To move forward, we need to use the Lie
algebras associated with these groups. In what follows, we expect our readers familiarity with
basic relevant facts about the Lie groups and Lie algebras which can be found in the books by Serre
[53], Humphreys [54] and Kac [36]. First, we notice that the Lie algebras matrices hi associated
with the Lie group maximal tori Ti (that is with all diagonal matrices considered earlier) are
commuting with each other thus forming the Cartan subalgebra, i.e.

[hi, hj] = 0. (3.15)

The matrices belonging to the normalizer are made of two types xi and yi corresponding to the
root systems �+ and �− defined in Appendix. The fixed point analysis described at the end of
previous section is translated into the following set of commutators:

[xi, yj] =
{
hi, if i = j

0, if i �= j
, (3.16a)

[hi, xj] = 〈αi∨ , αj〉xj, (3.16b)

[hi, yj] = −〈αi∨ , αj〉yj, (3.16c)

i = 1, . . . , n. To insure that the matrices (operators) x′
is and y′

is are nilpotent (that is their Lie
group ancestors belong to the Borel subgroup B) one must impose two additional constraints.
According to Serre [53] these are:

(adxi)
−〈αi∨ ,αj〉+1(xj) = 0, i �= j (3.16d)

(adyi)
−〈αi∨ ,αj〉+1(yj) = 0, i �= j. (3.16e)

15 Presence of C factor underscores the fact that we are considering the orbit of the factorgroup W = N/T .
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where adX Y = [X, Y ]. From the book by Kac [36] one finds that exactly the same relations
characterize the Kac–Moody affine Lie algebra. This fact is in accord with general results pre-
sented earlier in this work and in Part II and is of major importance for development of our
formalism. In particular, for the purposes of this development it is important to realize that
for each i Eqs. (3.16a)–(3.16c) can be brought to form (upon rescaling) coinciding with the
Lie algebra sl2(C)16 and, if we replace C with any closed number field F, then all semisimple
Lie algebras are made of copies of sl2(F) [54, p. 25]. The Lie algebra sl2(C) is isomorphic to
the algebra of operators acting on differential forms living on the Hodge-type complex mani-
folds [55]. This observation was absolutely essential for development of physical applications in
Part II.

Connections with Hodge theory can be also established through the method of coadjoint orbits.
We would like to discuss this method now. We begin by considering an orbit in the Lie group.
It is given by the Ad operator, i.e. O(X) = AdgX = gXg−1 where g ∈ G and X ∈ g with G
being the Lie group and g its Lie algebra. For compact groups globally and for noncompact
locally every group element g can be represented via the exponential, e.g. g(t) = exp(tXg), with
Xg ∈ g. Accordingly, for the orbit we can write O(X) ≡ X(t) = exp(tXg)X exp(−tXg). Since
the Lie group is a manifold M, the Lie algebra forms the tangent bundle of the vector fields at
given point of M. In particular, the tangent vector to the orbit X(t) is determined, as usual, by
TO(X) = d

dt X(t)t=0 = [Xg,X] = adXgX. Now we have to take into account that, actually, our
orbit is made for a vector X coming from the torus, i.e. T = exp(tX). This means that when we
consider the commutator [Xg,X] it will be zero for Xgi = hi and nonzero otherwise. Consider
next the Killing form κ(x, y) for two elements x and y of the Lie algebra:

κ(x, y) = tr(adx ady). (3.17)

From this definition it follows that

κ([x, y], z) = κ(x, [y, z]). (3.18)

The roots of the Weyl group can be rewritten in terms of the Killing form [54]. Its purpose is
to define the scalar multiplication between vectors belonging to the Lie algebra and, as such, it
allows one to determine the notion of orthogonality between these vectors. In particular, if we
choose x → X and y, z ∈ hi, then it is clear that the vector tangential to the orbitO(X) is going to
be orthogonal to the subspace spanned by the Cartan subalgebra. This result can be reinterpreted
from the point of view of symplectic geometry due to work of Kirillov [57]. To this purpose we
would like to rewrite Eq. (3.18) in the equivalent form, i.e.

κ(x, [y, z]) = κ(x, adyz) = κ(ad∗
xy, z) (3.19)

where in the case of compact Lie group, ad∗
xy actually coincides with adxy. The reason for

introducing the asterisk (∗) lies in the following chain of arguments. In Eq. (A.1) of Appendix
(and in Eq. (3.5)) we introduced vectors from the dual space. Such a construction is possible as
long as the scalar multiplication is defined. Hence, for the orbit AdgX there must be a vector ξ in

the dual space g
∗

such that equation

κ(ξ,AdgX) = κ(Ad∗
gξ,X) (3.20)

16 This fact is known as Jacobson–Morozov theorem [56].
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defines the coadjoint orbitO∗(ξ) = Ad∗
gξ. Accordingly, for such an orbit there is also the tangent

vectorTO∗(ξ) = ad∗
g
ξ to the orbit and, clearly, we haveκ(ξ, adXgX) = κ(ad∗

g
ξ,X). In the case if we

are dealing with the flag space, the family of coadjoint orbits will represent the flag space structure
as well. Next, letx ∈ g

∗
and ξ1, ξ2 ∈ TO∗(x). Then consider the properties of the (symplectic) form

ωx(ξ1, ξ2) to be determined explicitly momentarily. For this purpose we need to introduce some
notations, e.g. ad∗

g
x = f (x,g), etc. so that for g1 and g2 ∈ g one has ξi = f (x,gi), i = 1, 2. Then,

one can claim that for the compact Lie group and the associated with it Lie algebra ωx(ξ1, ξ2) =
κ(x, [g1,g2]). Indeed, using Eq. (3.18) we obtain: κ(x, [g1,g2]) = κ(ξ1,g2) = −κ(x, [g2,g1]) =
−κ(ξ2,g1). Thus constructed form defines the symplectic structure on the coadjoint orbit O∗(x)
since it is closed, skew-symmetric, nondegenerate and is effectively independent of the choice
of g1 and g2. The proofs can be found in the literature [58]. The obtained symplectic manifold
Mx is the quotient g/gh with gh being made of vectors of the Cartan subalgebra so that for
such vectors, by construction, ωx(ξ1, ξ2) = 0. From the point of view of symplectic geometry,
the points for which ωx(ξ1, ξ2) = 0 correspond to the critical points for the velocity vector field
on the manifold Mx. I.e. these are the points at which the velocity field vanishes. They are
in one-to one correspondence with the fixed points of the orbit O(X). This fact allows us to
use the Poincare′–Hopf index theorem (earlier used in our works on dynamics of 2 + 1 gravity
[59]) in order to obtain the Euler characteristic χ for such manifold as the sum of indices of
vector fields existing on Mx. We shall provide more details related to this observation below in
Section 3.4.

To complete the above discussion, following Atiyah [60], we notice that every nonsingular
algebraic variety in projective space is symplectic. The symplectic (Kähler) structure is inherited
from that in the projective space. The complex Kähler structure for the symplectic (Kirillov)
manifold is actually of the Hodge-type. This comes from the following observations. First, since
we have used the Killing form to determine the Kirillov symplectic form ωx and since the same
Killing form is used for the Weyl reflection groups [58], the induced unitary one-dimensional
representation of the torus subgroup of GLn(C) is obtained according to Kirillov [57] by simply
replacing t by the root of unity in Eq. (3.12). This is permissible if and only if the integral of
two-form

∫
γ
ωx taken over any two-dimensional cycle γ on the coadjoint orbitO∗(x) is an integer.

But this is exactly the condition which makes the Kähler complex structure that of the Hodge
type [55].

3.3. Construction of the moment map using methods of linear programming

In this subsection we are not employing the definition of the moment mapping used in sym-
plectic geometry [61].17 Instead, we shall rely heavily on works by Atiyah [60,62] with only
slightest refinement coming from noticed connections with the linear programming not men-
tioned in his papers and in literature on symplectic geometry. In our opinion, such a connec-
tion is helpful for better physical understanding of mathematical methods discussed in this
paper which potentially may be useful for applications in other disciplines.

Using Definition 1.1. of Section 1. We call the subset of Rn a polyhedron P if there existm× n

matrix A (with m < n) and a vector b ∈ Rm such that according to Eq. (1.8) we have

P = {x ∈ Rn | Ax ≤ b}.

17 Evidently, we are using the same thing anyway.
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Since each component of the inequalities Ax ≤ b determines the half space while the equality
Ax = b-the underlying hyperplane, the polyhedron is an intersection of finitely many halfspaces.
The problem of linear programming can be formulated as follows [63]: for the linear functional
H̃[x] = cT · x find maxH̃[x] on P provided that the vector c is assigned. It should be noted that
this problem is just one of many related problems. It was selected only because of its immediate
relevance. Its relevance comes from the fact that the extremum of H̃[x] is achieved at least at one of
the vertices ofP. The proof of this we omit since it can be found in any standard textbook on linear
programming, e.g. see [64] and references therein. This result does not require the polyhedron
to be centrally symmetric. Only convexity of the polyhedron is of importance. This is physically
plausible since, for instance, reflexive polyhedra discussed in Section 1 in connection with mirror
symmetry do not require such central symmetry as can be seen from two-dimensional examples
presented in Ref. [65, p.100].

To connect this optimization problem with results of our paper we constrain x variables to
integers, i.e. to Zn. Such a restriction is known in literature as integer linear programming. In
our case, it is equivalent to considering symplectic manifolds of Hodge-type (e.g. read page 11
of Atiyah’s paper, Ref. [60]). Hence, existence of mirror symmetry as well as the method of
coadjoint orbits both require the underlying symplectic manifolds to be of Hodge-type. This has a
deep physical reason which will become clear when we shall discuss the Khovanskii–Pukhlikov
correspondence in the next section.

As a warm up exercise, following Fulton [40], let us consider a deformation retract of complex
projective space CPn which is the simplest possible toric variety [40,41].18 Such a retraction is
achieved by using the map:

τ : CPn → Pn≥ = Rn+1
≥ \ {0}/R+

explicitly given by

τ : (z0, . . . , zn) �→ 1∑
i |zi|

(|z0|, . . . , |zn|) = (t0, . . . , tn), ti ≥ 0. (3.21)

The map τ by design is onto the standard n-simplex: ti ≥ 0, t0 + . . .+ tn = 1. To bring physics
to this discussion, let us consider the Hamiltonian for the harmonic oscillator. In the appropriate
system of units we can write it as H = m(p2 + q2). More generally, for finite set of oscillators,
i.e. for the “truncated” bosonic string, we have:H[z] =∑i mi|zi|2, where, following Atiyah [60],
we introduced the complex zj variables via zj = pj + iqj . Let now such a Hamiltonian system
(the truncated string) possess the finite fixed energy E . Then we obtain:

H[z] =
n∑
i=0

mi|zi|2 = E . (3.22)

It is not difficult to realize that the above equation actually represents the CPn since the points
zj can be identified with the points eiθzj in Eq. (3.22) while keeping the above expression form-
invariant. In such a case one is saying that the reduced phase space for this model is CPn as
discussed already in Section 7.6.3 of Part II. We can map such a model of CPn back into the
simplex using the map τ. Since CPn is the simplest toric variety [40,41], if we let zj to “live”
in such a variety it will be affected by the torus action as discussed earlier in this section. This
means that, in general, the masses in Eq. (3.22) may change and, accordingly, the energy. Only if

18 Although such a construction was introduced in Part II, we write it down explicitly anyway for the sake of uninterrupted
reading.
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we constrain the torus action to the simplex (or, more generally, to the polyhedron as described
by Fulton [40]), will the energy be conserved. Evidently, such a constraint is compatible with the
original idea of identification of points zj with eiθzj . The fixed points of such defined torus action
are roots of unity according to Eq. (3.10). In general, the existence of at least one fixed point is
guaranteed for the linear algebraic group by Theorem 10.6, Ref. [47]. With such defined torus
action, |zi|2 is just some positive number, say, xi. The essence of the moment map lies exactly in
such identification.19 Hence, we obtain the following image of the moment map:

H̃[x] =
n∑
i=0

mixi, (3.23)

where we have removed the energy constraint for a moment thus making H̃[x] to coincide with
earlier defined linear functional to be optimized. Now we have to find a convex polyhedron
on which such a functional is going to be optimized. Thanks to works by Atiyah [60,62] and
Guillemin and Sternberg [66], this task is completed already. Naturally, the vertices of such
a polyhedron are the critical points of the moment map. Then, the theorem of linear pro-
graming stated earlier guarantees that H̃[x] achieves its maximum at least at some of its ver-
tices. Delzant [67] had demonstrated that this is the case without use of linear programming
language.

It is helpful to illustrate the essence of above arguments by employing simple but im-
portant example originally discussed by Frankel [68]. Consider a two sphere S2 of unit ra-
dius, i.e. x2 + y2 + z2 = 1, and parametrize this sphere using coordinates x = √

1 − z2 cosφ,
y = √

1 − z2 sin φ, z = z. In Section 4, we shall demonstrate that the Hamiltonian for the free
particle “living” on such a sphere is given by H[z] = m(1 − z) so that equations of motion pro-
duce the circles of latitude. These circles become (critical) points of equilibria at the north and
south pole of the sphere, i.e. for z = ±1. Evidently, these are the fixed points of the torus action.
Under such circumstances our polyhedron is the segment [−1, 1] and its vertices are located at ±1
(to be compared with discussion in Section 1). The image of the moment map H[x] = m(1 − x)
acquires its maximum at x = 1 and the value x = 1 corresponds to two polyhedral vertices located
at 1 and −1, respectively. This doubling feature was noticed and discussed in detail by Delzant
[67] whose work contains all needed proofs. These can be considered as elaborations on much
earlier results by Frankel [68]. The circles on the sphere are representing the torus action (e.g. read
the discussion following Eq. (3.22)) so that dimension of the circle is half of that of the sphere.
This happens to be a general trend: the dimension of the Cartan subalgebra (more accurately, the
normalizer of the maximal torus) is half of the dimension of the symplectic manifold M [39,67].
Incidentally, in the next subsection we shall see that the integral of the Kirillov–Kostant symplectic
two-form ωx over S2 is equal to 2 so that the complex structure on the sphere is that of the Hodge
type as required. Also, the symplectic two-form ωx = 0 at two critical points. Generalization of
this example to the multiparticle case will be discussed below and in Section 4.

The results discussed thus far although establish connection between the singularities of sym-
plectic manifolds and polyhedra do not allow us to discuss the fine details distinguishing between
different polyhedra. Fortunately, this has been to a large degree accomplished in Refs. [58,69].
Such a task is equivalent to classification of all finite dimensional exactly integrable systems in
accord with the Lie groups and Lie algebras associated with them.

19 More accurate definition is given in Section 4.
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3.4. Calculation of the Euler characteristic

Using results just presented we are ready to calculate the Euler characteristic of the projective
algebraic variety following ideas by Hopf [45] and Hopf and Samelson [46]. To begin, we notice
that in the case of vector fields on S2 discussed in the previous subsection there are two fixed
points. The Poincare′-Hopf fixed point theorem (extensively used in our earlier work on 2 + 1
gravity, Ref. [59]) tells us thatχ is the sum of indices of the vector (or line) fields foliating manifold
M. In our case, the index of each critical point is known to be 1 so that χ = 2 as required.20 In the
case of S2 the Darboux coordinates can be chosen as φ and z with 0 ≤ φ < 2π and z ∈ [−1, 1].
The volume form� is dφ ∧ dz so that the phase space is effectively the productR× S1. We would
like to construct now a dynamical system whose Darboux coordinates are {t1, . . . , tn;φ1, . . . , φn}.
If in the case of S2 the z coordinate varied in the segment [−1, 1], now we shall assume that the
point t = {t1, . . . , tk} can vary inside some polytope P ⊂ Rk including its boundaries. For our
purposes, in view of Eq. (3.22), it is sufficient to consider only some simplex�k living in Rk. This
happens when all masses in Eq. (3.22) are the same so that using Eqs. (3.21) and (3.22) we obtain
equation for the simplex. In the case of S2 we can think of z coordinate as deformation retract for
S2. One can say that S2 is the inflated symplectic manifold corresponding to the segment [−1, 1],
i.e. S2 ∼ R× S1. Accordingly, we can say that CPk ∼ �k × S1 × · · · S1. The Darboux coordi-
nates {t1, . . . , tk;φ1, . . . , φk} → {t1/21 eiφ1 , . . . , t

1/2
k eiφk ,

√
1 −∑i ti} ≡ {z1, . . . , zk, zk+1}, pro-

vided that t1 + · · · + tk+1 = 1. These results are in accord with Eq. (3.21). Such a choice of
coordinates realizes CPk as the space of equivalence classes

|z1|2 + · · · + |zk|2 + |zk+1|2 = 1, zi ∼ eiφizi, i = 1 − k. (3.24)

of the points lying on the sphere S2k+1 in Ck+1 (we used this realization of CPk already in Part
II). In accord with previous subsection, it is the reduced phase space (the reduced symplectic
manifold Mred) for our dynamical system.

Following Section 1, it is of interest to consider the inflated simplex n�k living on the lattice
Zk. Accordingly, we can consider the associated with it the inflated symplectic manifold M.
The indices of critical points of such a manifold produce its Euler characteristic χ. Irrespective
to locations of critical points on such a manifold, the point t should have coordinates such that
t1 + · · · + tk = n. If P is the rational polytope these coordinates should be some integers. Ac-
cordingly, one has to count the number of solutions to the equation t1 + · · · + tk = n in order
to determine the number p(k, n) of such critical points. This number we know already since
it is given by Eq. (1.2). Accordingly, for physically interesting case associated with our inter-
pretation of the Veneziano amplitudes we obtain, p(k, n) = χ. These rather simple arguments
are useful to compare with extremely sophisticated proofs of the same result using methods of
algebraic geometry, e.g. see Refs. [40–42]. These methods are of importance however in case
if one is interested in computation of some observables as it is done earlier, for example, for
the Witten–Kontsevich model [51]. More on this will be said below and in Part IV. Obtained
results provide us with tools needed for symplectic treatment of the Veneziano amplitudes and for
restoration of generating function associated with these amplitudes. This is accomplished in the
next section.

20 Incidentally, if following Delzant [67], we divide the number of polyhedral vertices by factor of 2, then using Eq. (1.7)
with 2m replaced by 1 we shall reobtain the result χ = 2. More formally, we can say that the cardinality |G| = 1

2 dim M.
That this is indeed the case in general was proven by Delzant.



A.L. Kholodenko / Journal of Geometry and Physics 56 (2006) 1433–1472 1461

4. Exact solution of the Veneziano model: symplectic treatment

4.1. The moment map, the Duistermaat–Heckman formula and the Khovanskii–Pukhlikov
correspondence

4.1.1. General remarks
We have mentioned already number of times mathematical connections between the Veneziano

amplitudes (and the Veneziano partition function associated with them) and dynamical systems.
We would like to summarize these results now. First, already in Part I we emphasized that the
development in this series of work is motivated in part by two major observations. These are:
(a) the unsymmetrized Veneziano amplitude can be looked upon as the Laplace transform of the
partition function obtained by quantization of finite set of harmonic oscillators as described in
the work by Vergne [3], (b) the unsymmetrized Veneziano amplitude can be interpreted as one of
the periods associated with homology cycles on the variety of Fermat-type. These observations
are sufficient for development of both symplectic and supersymmetric approaches leading to
restoration of the underlying physical model producing the Veneziano-like amplitudes. In Part II
we strengthened these observations by invoking theorems by Solomon and Ginzburg (Theorems
2.2 and 2.5, respectively). Also, in Part II using results by Shepard and Todd and Serre we provided
enough evidence for the Veneziano partition function to be supersymmetric. Using these results
we obtained exact solution for the Veneziano model, i.e. we have obtained the partition/generating
function for this model whose observables are unsymmetrized Veneziano amplitudes. In this work
we provided additional details directing us towards alternative (symplectic) interpretation of this
partition function. These include: (a) zeta function by Ruelle, (b) method of coadjoint orbits and
(c) the moment map. Connections between supersymmetric and symplectic descriptions can be
deduced using well written monograph by Berline, Getzler and Vergne [70]. In view of this, to
avoid excessive size of our paper, it is sufficient to emphasize only things of immediate relevance.
In particular, we would like to discuss now the Duistermaat–Heckman formula.

4.1.2. The Duistermaat–Heckman formula
Although the description of the Duistermaat–Heckman (D–H) formula can be found in many

places, we would like to discuss it now in connection with earlier obtained results. To this purpose,
using Subsection 3.4. let us consider once again the simplest dynamical model discussed there.
The volume form� for this model is given by� := dθ ∧ dz so that

∫
S2 � = 4π as expected. With

help of this form the equation for the moment map can be obtained. According to the standard
rules [39,61], given that ξ = ∂

∂θ
, we obtain

i(ξ)� = dz. (4.1)

The Hamiltonian H, i.e. the moment map, is given in this case by H = z. Consider now the
integral I(β) of the type

I(β) =
∫
Mred

�̃ exp(−βH) = 1

β
(exp(β) − exp(−β)). (4.2)

In this integral the reduced phase space is Mred = S2/S1 so that �̃ = dz and, as before, z ∈
[−1, 1]. Eq. (4.2) is essentially the D–H formula! We would like to explain this fact in some
detail. In view of the results of Section 3.3 we know that the moment map H achieves its extrema
at the vertices of P. Since in our case P is the segment [−1, 1], indeed, H achieves its extrema
at both 1 and −1 so that the right-hand side of Eq. (4.2) is in fact the sum over the vertices of P
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taken with the appropriate weights. The D–H formula provides exactly the same answer. Indeed
letM ≡ M2n be a compact symplectic manifold equipped with the momentum map� : M → R
and the (Liouville) volume form dV = ( 1

2π )n 1
n!�

n. According to the Darboux theorem, the two-
form � can be presented locally as: � =∑n

l=1 dql ∧ dpl. Suppose that such a manifold has
isolated fixed points p belonging to the fixed point set V associated with the isotropy subgroup G
(Definition 3.5) acting on M. Then, in its most general form, the D–H formula can be written as
[39,61]∫

M

dVe� =
∑
p∈V

e�(p)∏
j aj,p

(4.3)

where a1,p, . . . , an,p are the weights of the linearized action of G on TpM. Using the Morse
theory, Atiyah [62] and others [61] have demonstrated that it is sufficient to keep terms up to
quadratic in the expansion of � around given p. In such a case the moment map looks exactly
like that given in Eq. (3.22). Moreover, the coefficients a1,p, . . . , an,p are just “masses”mi in Eq.
(3.22). We put quotation marks around masses since they can be both positive and negative. With
these remarks, it should be obvious that Eq. (4.2) is the D–H formula. It should be noted that
although in Eq. (4.3) the space M is not reduced, Eq. (4.2) can be written without requirement of
reduction as well. For this it is sufficient to consider in Eq. (4.2) the form� = 1

2πdθ ∧ dz. Hence,
indeed, Eq. (4.2) is the D–H formula. Consider now the limiting case β → 0+ of Eq. (4.2). Then,
we obtain

I(β → 0+) = 2. (4.4)

But 2 is the Euclidean volume of the polytope P, in our case, the length of the segment [−1, 1].
This is in accord with general result obtained by Atiyah [60]. Now we would like to generalize
this apparently trivial result in several directions. First, we would like to blow up the sphere so
that its diameter would be 2m. Second, we would like to consider a collection of such spheres
with respective diameters 2mi, i = 1 − d. For such a collection we can consider two situations:
(a) the total energy E for the Hamiltonian H =∑i zi is not conserved and (b) the total energy is
conserved, e.g. see Eq. (3.22). The first case is nonphysical but, apparently, is relevant for theory
of singularities of differentiable maps and is related to the computation of the Milnor number.
This issue was discussed in our earlier work, Ref. [71]. The second case is physically relevant.
Hence, we would like to discuss it in some detail. Both cases can be found as exercises on page 50
in the book by Guillemin [38]. In discussing the second case both Guillemin [38], and Audin [61],
notice that the action for the torus T d = S1 × · · · × S1 on such Hamiltonian system is diagonal
(e.g. Section 3) and is made of d-tuples (eiθ1 , . . . , eiθd ) subject to the constraint eiθ1 , . . . , eiθd = 1.
This constraint is actually the Veneziano condition discussed in Section 3, e.g. see Eq. (3.14).

Based on the information just mentioned, we would like to be more specific now. To this
purpose, following Vergne [72] and Brion [6] we would like to consider the simplest nontrivial
case of the integral of the form

I(k) =
∫
k�

dx1dx2 exp{−(y1x1 + y2x2)}, (4.5)

where k� is dilated standard simplex with coefficient of dilation k. Following these authors,
calculation of this integral can be done exactly with the result

I(k) = 1

y1y2
+ e−ky1

y1(y1 − y2)
+ e−ky2

y2(y2 − y1)
. (4.6)
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As in earlier case of Eq. (4.2), the obtained result fits the D–H formula, Eq. (4.3), and, as before,
in the limit: y1, y2 → 0, some calculation produces the anticipated result: Volk� = k2/2!, in
accord with Eq. (4.4). In view of results of Parts I, II and this work, this integral is of relevance to
calculation of Veneziano amplitudes (and it does have symplectic meaning !): the standard simplex
� in the present case is just the deformation retract for the Fermat (hyper)surface associated with
calculation of the Veneziano (or Veneziano-like) amplitudes. The relevance of this integral to the
Veneziano amplitude is far from superficial as we would like to discuss now.

4.1.3. The Khovanskii–Pukhlikov correspondence and calculation of χ
The Khovanskii–Pukhlikov correspondence can be understood based on the following generic

example. Following Ref. [73] we would like to compare the integral

I(z) =
∫ t

s

dxezx = etz

z
− esz

z
with the sum S(z) =

t∑
k=s

ekz = etz

1 − e−z
+ esz

1 − ez
, (4.7)

where Eq. (1.4) was used for calculation of S(z).
One can pose a problem: is there way to transform the integral I into the sum S? Clearly, we are

interested in such a transform in view of the fact that the Ehrhart polynomial computes the number
of lattice points of the dilated polytope while the D–H integral can be used only for calculation
of the Euclidean volumes of such polytopes as we just demonstrated on simple examples. The
positive answer to the above question was found by Khovanskii and Pukhlikov [74] and refined
by many others, e.g. see Ref. [73]. Before discussing their work, we would like to write down the
discrete analog of the result, Eq. (4.6). It is given by

S(k) = 1

1 − e−y1

1

1 − e−y2
+ 1

1 − ey1

e−ky1

1 − ey1−y2
+ 1

1 − ey2

e−ky2

1 − ey2−y1

=
∑

(l1,l2)∈k�
exp{−(y1l1 + y2l2)}. (4.8)

This result can be obtained rather straightforwardly using Brion’s formula for the generating
function for polytopes. It is given by earlier discussed Eq. (1.11) and, hence, it is in complete
accord with this more general equation. Some computational details can be found in the monograph
by Barvinok [7]. Following his exposition, we would like to discuss some physics behind these
formal calculations. For this we need to use the definition of the monoid Sσ , Eq. (3.3), introduced
earlier. In view of the Remark 9.9 (Part II) the set a1, . . . , ak forms a basis of the vector space V
so that the monoid Sσ defines a rational polyhedral cone σ. Thanks to the theorem by Brion [6,7]
the generating function in the left-hand side of Eq. (1.11) can be conveniently rewritten as

f (P, x) =
∑

m∈P∩Zd

xm =
∑

σ∈Vert P
xσ (4.9a)

so that for the dilated polytope it reads as follows

f (kP, x) =
∑

m∈kP∩Zd

xm =
n∑
i=1

xkvi
∑
σi

xσi . (4.9b)

In the last formula the summation is taking place over all vertices whose location is given by the
vectors from the set {v1, . . . , vn}. This means that in actual calculations one can first calculate
the contributions coming from the cones σi of the undilated (original) polytope P and only then
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one can use this equation in order to get the result for the dilated polytope. Let us apply these
general rules to our specific problem of computation of S(k) in Eq. (4.8). We have our simplex
with vertices in x− y plane given by the vector set {v1 = (0, 0), v2 = (1, 0), v3 = (0, 1)} where
we have written the x coordinate first. For this case we have three cones: σ1 = l2v2 + l3v3;
σ2 = v2 + l1(−v2) + l2(v3 − v2); σ3 = v3 + l3(v2 − v3) + l1(−v3); {l1, l2, l3} ∈ Z+. In writing
these expressions for the cones we have taken into account that, according to Brion, when making
calculations the apex of each cone should be chosen as the origin of the coordinate system.
Calculation of contributions to generating function coming from σ1 is the most straightforward.
Indeed, in this case we have x = x1x2 = e−y1e−y2 . Now, the symbol xσ in Eqs. (4.9) should be
understood as follows. Since σi , i = 1 − 3, is actually a vector, it has components, like those for
v1, etc. We shall write therefore xσ = x

σ(1)
1 , . . . , x

σ(d)
d , where σ(i) is the i-th component of such a

vector. Under these conditions calculation of the contributions from the first cone with the apex
located at (0,0) is completely straightforward

∑
(l2,l3)∈Z2+

x
l2
1 x

l3
2 = 1

1 − e−y1

1

1 − e−y2
(4.10)

since it is reduced to the computation of the infinite geometric progressions. But physically,
the above result can be looked upon as a product of two partition functions for two harmonic
oscillators whose ground state energy was discarded. By doing the rest of calculations in the way
just described we reobtain S(k) from Eq. (4.8) as required. This time, however, we know that the
obtained result is associated with the assembly of harmonic oscillators of frequencies ±y1, ±y2
and ±(y1 − y2) whose ground state energy is properly adjusted. The “frequencies” (or masses)
of these oscillators are coming from the Morse-theoretic considerations for the moment maps
associated with the critical points of symplectic manifolds as explained in the paper by Atiyah
[62]. These masses enter into the “classical” D–H formula. It is just a classical partition function
for a system of such described harmonic oscillators living in phase space containing singularities.
The D–H classical partition function, Eq. (4.6), has its quantum analog, Eq. (4.8), just described.
The ground state for such a quantum system is degenerate with degeneracy being described by the
Kostant multiplicity formula. To calculate this degeneracy would require us to study the limiting
case: y1, y2 → 0 of Eq. (4.8) for S(k). Surprisingly, unlike the continuum case studied in the
previous subsection, calculation of number of points belonging to the dilated simplex k� (which
is equivalent to the calculation of the Kostant multiplicity formula or, which is the same, to the
computation of the Ehrhart polynomial or to the Euler characteristic χ of the associated projective
toric variety) is very nontrivial in the present case. It is facilitated by the observation that in the
limit s → 0 the following expansion can be used

1

1 − e−s
= 1

s
+ 1

2
+ s

12
+O(s2). (4.11)

Rather lengthy calculation involving this expansion produces in the end the anticipated result for
the Ehrhart polynomial:

|k� ∩ Z2| = P(k, 2) = k2

2
+ 3

2
k + 1. (4.12)

Obtained results and their interpretations are in formal accord with those by Vergne [3]. In her
work no details (like those presented above) or physical applications are given however. At the
same time, the results obtained thus far apparently are not in agreement with earlier obtained major
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result, Eq. (1.1). Fortunately, the situation can be corrected with help of the following theorem
by Barvinok [75].

Theorem 4.1. For the fixed lattice of dimensionality d there exist a polynomial time algorithms
which, for any given rational polytopeP, calculate the generating function f (P, x) with the result:

f (P, x) =
∑

m∈P∩Zd

xm =
∑
i∈I

εi
xpi

(1 − xai 1 ) . . . (1 − xai d )
, (4.13)

where ε ∈ {−1, 1}, pi, ai j ∈ Zd and ai j �= 0 ∀i, j. In fact, ∀i the set ai 1, . . . , ai d forms a basis
of Zd and I is the set {1, . . . , n} labeling the vertices of P.

Remark 4.2. It is easy to check this result using Eq. (1.1) for n (or d) equal to 2 and comparing it
with S(k) from Eq. (4.8). It should be noted however, that Eq. (1.1) was obtained using some kind
of combinatorial and supersymmetric arguments as explained in Part II while Eq. (4.8) is obtained
exclusively based on use of the bosonic formalism. It should be clear that both approaches leading
to the design of new model reproducing the Veneziano and Veneziano-like amplitudes can be used
in principle since they are essentially equivalent in view of the earlier mentioned Ref. [70].

At this point, finally, we are ready do discuss the Khovanskii–Pukhlikov correspondence. It
should be considered as alternative to the method of coadjoint orbits discussed in Section 3.2.
Naturally, both methods are in agreement with each other with respect to final results. Following
Refs. [38,72,73] we introduce the Todd operator (transform) via

Td(z) = z

1 − e−z
. (4.14)

In view of Eq. (4.7), it can be demonstrated [73] that

Td

(
∂

∂h1

)
Td

(
∂

∂h2

)(∫ t+h2

s−h1

ezx dx

)
|h1=h1=0=

t∑
k=s

ekz. (4.15)

This result can be now broadly generalized following ideas of Khovanskii and Pukhlikov [66]. In
particular, the relation

Td

(
∂

∂z

)
exp

(
n∑
i=1

pizi

)
= Td(p1, . . . , pn) exp

(
n∑
i=1

pizi

)
(4.16)

happens to be the most useful. Applying it to

i(x1, . . . , xk; ξ1, . . . , ξk) = 1

ξ1, . . . , ξk
exp

(
k∑
i=1

xiξi

)
(4.17)

we obtain

s(x1, . . . , xk; ξ1, . . . , ξk) = 1∏k
i=1(1 − exp(−ξi))

exp

(
k∑
i=1

xiξi

)
. (4.18)

This result should be compared now with the individual terms on the right-hand side of Eq. (1.11)
on one hand and with the individual terms on the right-hand side of Eq. (4.3) on another. Evidently,
with help of the Todd transform the exact “classical” results for the D–H integral are transformed
into the “quantum” Weyl character formula.
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We would like to illustrate these general observations by comparing the D–H result, Eq. (4.6),
with the Weyl character formula (e.g. see Eq. (1.11)), Eq. (4.8). To this purpose we need to use
already known data for the cones σi, i = 1 − 3, and the convention for the symbol xσ . In particular,
for the first cone we have already: xσ1 = x

l1
1 x

l2
2 = [exp(l1y1)] · [exp(l2y2)].21 Now we assemble

the contribution from the first vertex using Eq. (4.6). We obtain, [exp(l1y1)] · [exp(l2y2)]/y1y2.
Using the Todd transform we obtain as well

Td

(
∂

∂l1

)
Td

(
∂

∂l2

)
1

y1y2
[exp(l1y1)] · [exp(l2y2)] |l1=l2=0= 1

1 − e−y1

1

1 − e−y2
. (4.19)

Analogously, for the second cone we obtain: xσ2 = e−ky1e−l1y1e−l2(y1−y2) so that use of the Todd
transform produces

Td

(
∂

∂l1

)
Td

(
∂

∂l2

)
1

y1 (y1 − y2)
e−ky1e−l1y1e−l2(y1−y2) |l1=l2=0= 1

1 − ey1

e−ky1

1 − ey1−y2
,

(4.20)

etc.
In Section 3.4, we sketched ideas behind calculations of Euler characteristic χ. It is instructive

in the light of just obtained results to reobtain χ.
To accomplish the task is actually not difficult since it is based on the information we have

presented already. Indeed, by looking at the last two equations it makes sense to rewrite formally
the partition function, Eq. (4.5), in the following symbolic form

I(k, f) =
∫
k�

dx exp(−f · x) (4.21)

valid for any finite dimension d. Since we have performed all calculations explicitly for two-
dimensional case, for the sake of space, we only provide the idea behind such type of cal-
culation for any d.22 In particular, using Eq. (4.3) we can rewrite this integral formally as
follows:∫

k�

dx exp(−f · x) =
∑
p

exp(−f · x(p))∏d
i h

p
i (f)

. (4.22)

Applying the Todd operator (transform) to both sides of this formal expression and taking into
account Eqs. (4.19), (4.20) (providing assurance that such an operation indeed is legitimate and
makes sense) we obtain∫

k�

dx
d∏
i=1

xi

1 − exp(−xi) exp(−f · x)

=
∑

v∈Vert P
exp{〈f · v〉}

[
d∏
i=1

(1 − exp{−hvi (f)uvi })
]−1

=
∑

x∈P∩Zd

exp{〈f · x〉} (4.23)

21 To obtain correct results we needed to change signs in front of l1 and l2. The same should be done for other cones as
well.
22 Mathematically inclined reader is encouraged to read paper by Brion and Vergne [76], where all missing details are

scrupulously presented.
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where the last equation was written in view of Eq. (1.11). From here, it is clear that in the limit:
f = 0 we reobtain back χ.

4.2. From Riemann–Roch–Hirzebruch to Witten and Lefschetz via Atiyah and Bott

As it was noticed already by Khovanskii and Puklikov [74] and elaborated by others, e.g. see
Ref. [76], in the limit: f = 0 the integral in the left-hand side of Eq. (4.23) can be associated
with the Hirzebruch–Grotendieck–Riemann–Roch formula for the Euler characteristic χ(E). In
standard notations [76,77] it is given by

χ(E) =
∫
X

ch(E) · Td(TX), (4.24)

where E is a vector bundle over the variety X, ch(E) the Chern character of E, and Td(TX) is the
Todd class of the tangent bundle TX of X. This formula is too formal to be used immediately. The
mathematical formalism of equivariant cohomology is needed for actual calculations connecting
Eq. (4.24) with the left-hand side of Eq. (4.23). It was developed in the classical paper by Atiyah
and Bott [25] inspired by earlier work by Witten [26] on supersymmetry and Morse theory. In
this work we shall use only a small portion of their results. A very pedagogical exposition of the
results by Atiyah and Bott can be found in the monograph by Guillemin and Sternberg [78] also
containing helpful additional supersymmetric information.

We begin our discussion with the following observations. Earlier, in Section 3.2, we introduced
the Kirillov–Kostant symplectic two-form ωx. We noticed that this form is defined everywhere
outside the set of critical points of symplectic manifoldM. The simplest example of the symplectic
two-form was given in Section 3.4 for the case of two-sphereS2 where it coincides with the volume
form� = dφ ∧ dz for which

∫
S2 � = 4π. At the same time, the symplectic volume form is given

by �/2π so that the integral over S2 becomes equal to 2. This fact reminds us about the Gauss-
Bonnet theorem for the two-sphere which is prompting us to associate the two-form �/2π with
the curvature two-form. To make things more interesting we recall some facts from the differential
analysis on complex manifolds as described, for example, in the book by Wells [55]. From this ref-
erence we find that the first Chern class c1(E) of the E vector bundle over the sphere S2 is given by

c1(E) = i

π

dz ∧ dz̄
(1 + |z|2)2 = 2

π

ρdρdφ

(1 + ρ2)2 (4.25)

so that
∫
S2 c1(E) = 2. Next, let us recall that any Kähler manifold is symplectic [61] and

that for any Kähler manifold the second fundamental form � can be written locally as
� = i

2

∑
ij hij(z)dzi ∧ dz̄j so that hij(z) = δij +O(|z|2). Hence, any symplectic volume form

can be rewritten in terms of just described form�. The form� is closed but not exact. Evidently,
up to a constant, c1(E) in Eq. (5.2) coincides with the standard Kähler two-form. In view of
the Gauss–Bonnet theorem, it is not exact. An easy calculation shows that the form dφ ∧ dz
can also be brought to the standard Kähler two-form (again up to a constant). Moreover, for
the Hamiltonian of planar harmonic oscillator discussed in Section 3.3. the standard symplectic
two-form � can be written in several equivalent ways

� = dx ∧ dy = r dr ∧ dθ = 1

2
dr2 ∧ dθ = i

2
dz ∧ dz̄ (4.26)

and is certainly Kählerian. For collection of k harmonic oscillators the symplectic two-form �

is given, as usual, by � =∑k
i=1 dxi ∧ dyi = i

2

∑k
i=1 dzi ∧ dz̄i so that its n-th power is given by
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�n = � ∧� ∧ · · · ∧� = dx1 ∧ dy1 ∧ · · · dxn ∧ dyn. In view of these results, it is convenient
to introduce the differential form

exp� = 1 +�+ 1

2!
� ∧�+ 1

3!
� ∧� ∧�+ · · · · . (4.27)

By design, this expansion will have only k terms. Our earlier discussion of the moment map in
Section 3.3. suggests that just described case of the collection of harmonic oscillators is generic
since its existence is guaranteed by the Morse theory as discussed by Atiyah [62].23 In view of
Eq. (4.25) such an expansion can be formally associated with the total Chern class. Hence, we
shall associate exp� with the total Chern class. Since all symplectic manifolds we considered
earlier possess singularities the standard homology and cohomology theories should be replaced
by equivariant ones as explained by Atiyah and Bott [25]. To this purpose we observe that in
the absence of singularities the symplectic two-form � is always closed, i.e. d� = 0. In case of
singularities, one should replace the exterior derivative d by d̃ = d + i(ξ)24 while changing � to
�− f · x in notations of Eq. (4.21). The D–H integral, Eq. (2.22) can be formally rewritten now as∫

k�

dx exp(−f · x) =
∫
k�

exp(�̃) (4.28)

where �̃ = �− f · x. The form �̃ is equivariantly closed. Indeed, since d̃�̃ =
d�+ i(ξ)�− f · dx then, in view of Eq. (4.1), i(ξ)�− f · dx = 0 by design, while d� = 0
everywhere, except at singularities (critical points) where � = 0 (as discussed in Section
3.2). Hence, d̃�̃ = 0 as required. Since � can be identified with the Chern class one should
identify f · x with the Chern class as well, i.e. f · x ≡∑d

i=1 fici where we took into account that
E = L1 ⊕ · · ·Ld because Cd = C ⊕ C ⊕ · · · ⊕ C so that Li is the line bundle associated with
Ci. After such an identification Eq. (4.24) can be rewritten as

χ(E) =
∫
X

e� ·
d∏
i=1

ci

1 − exp(−ci) . (4.29)

Obtained result is in agreement with that given in the book by Guillemin [38, p. 60].
In view of the results of Part I, and Theorems 2.2 (by Solomon) and 2.5. (by Ginzburg) of

Part II one can achieve more by discussing the intersection cohomology ring of the reduced
spaces associated with the D–H measures. Since in Part I we noticed already that the Veneziano
amplitudes can be formally associated with the period integrals for the Fermat (hyper)surfaces F
and since such integrals can be interpreted as intersection numbers between the cycles on F, one
can formally rewrite the precursor to the Veneziano amplitude (as discussed in Part I) as

I =
(−∂
∂f1

)r1
· · ·
(−∂
∂fd

)rd ∫
�

exp(�̃) |fi=0∀i=
∫
�

dx(c1)r1 · · · (cd)rd (4.30)

provided that r1 + · · · + rd = n. In such a language, the problem of calculation of the Veneziano
amplitudes using generating function, Eq. (4.28), becomes mathematically almost equivalent to
earlier considered calculations related to the Witten–Kontsevich model discussed earlier in Ref.

23 In view of earlier discussed examples, we are interested only in the rotationally invariant observables, this means that
the θ (or φ) dependence in the two-form, Eq. (5.3), can be dropped which is equivalent to considering only the reduced
phase space. This is meaningful both mathematically and physically. Details can be found in Ref. [33, pp. 65–71].
24 E.g. see Eq. (4.1).
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[42]. This circumstance will be exploited further in Part IV. Obtained results provide complete
symplectic solution of the Veneziano model.

As it was noticed by Atiyah and Bott [25], the replacement of exterior derivative d by d̃ =
d + i(ξ) was inspired by earlier work by Witten on supersymmetric formulation of quantum
mechanics and Morse theory, Ref. [26]. Such an observation allows us to discuss calculation
of χ and, hence, the Veneziano amplitudes using the supersymmetric formalism developed by
Witten. The traditional way of developing Witten’s ideas is discussed in detail in earlier mentioned
monograph, Ref. [70]. Its essence is well summarized by Guillemin [38]. Following this reference
we notice thatχ is equal to the dimensionQ = Q+ −Q− of the quantum Hilbert space associated
with the classical system described by the (moment map) Hamiltonian as explained earlier in this
section. To describe quantum spaces associated with Q+ and Q− we need to remind our readers
of several facts from the differential analysis on complex manifolds already discussed in Part II.

We begin with the following observations. Let X be the complex Hermitian manifold and let
E p+q(X) denote the complex-valued differential forms (sections) of type (p, q), p+ q = r, living
on X. The Hodge decomposition insures thatE r(X) =∑p+q=r E p+q(X). The Dolbeault operators

∂ and ∂̄ act on E p+q(X) according to the rule ∂ : E p+q(X) → E p+1,q(X) and ∂̄ : E p+q(X) →
E p,q+1(X), so that the exterior derivative operator is defined as d = ∂ + ∂̄. Let now ϕp, ψp ∈ E p.
By analogy with traditional quantum mechanics we define (using Dirac’s notations) the inner
product

〈ϕp | ψp〉 =
∫
M

ϕp ∧ ∗ψ̄p, (4.31)

where the bar means the complex conjugation and the star (∗) means the usual Hodge conjugation.
Use of such a product is motivated by the fact that the period integrals, e.g. those for the Veneziano-
like amplitudes, and, hence, those given by Eq. (4.30), are expressible through such inner products
[55]. Fortunately, such a product possesses properties typical for the finite dimensional quantum
mechanical Hilbert spaces. In particular

〈ϕp | ψq〉 = Cδp,q and 〈ϕp | ϕp〉 > 0, (4.32)

where C is some positive constant. With respect to such defined scalar product it is possible to
define all conjugate operators, e.g. d∗, etc. and, most importantly, the Laplacians

� = dd∗ + d∗d, � = ∂∂∗ + ∂∗∂, �̄ = ∂̄∂̄∗ + ∂̄∗∂̄. (4.33)

All this was known to mathematicians before Witten’s work [26]. The unexpected twist occurred
when Witten suggested to extend the notion of the exterior derivative d. Within the de Rham
picture (valid for both real and complex manifolds) let M be a compact Riemannian manifold and
K be the Killing vector field which is just one of the generators of isometry of M, then Witten
suggested to replace the exterior derivative operator d by the extended operator

ds = d + si(K) (4.34)

discussed earlier in the context of the equivariant cohomology. Here, s is real nonzero parameter
conveniently chosen. Witten argues that one can construct the Laplacian (the Hamiltonian in his
formulation)� by replacing� by�s = dsd

∗
s + d∗

s ds. This is possible if and only if d2
s = d∗2

s = 0
or, since d2

s = sL(K), where L(K) is the Lie derivative along the field K, if the Lie derivative
acting on the corresponding differential form vanishes. The details are beautifully explained
in the much earlier paper by Frankel [68] mentioned earlier in Section 3.3. Atiyah and Bott
observed that the multicomponent auxiliary parameter s can be identified with earlier introduced
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f. This observation provides the link between the symplectic D–H formalism discussed earlier
and Witten’s supersymmetric quantum mechanics. Looking at Eq. (4.33) and following Refs.
[3,38,39,70] we consider the (Dirac) operator ∂́ = ∂̄ + ∂̄∗ and its adjoint with respect to scalar
product, Eq. (4.32), then use of the above references suggests that

Q = ker ∂́ − co ker ∂́∗ = Q+ −Q− = χ. (4.35)

in accord with Vergne [3]. The results just described provide yet another link between the su-
persymmetric and symplectic formalisms. Additional details can be found both in Part II and
references just cited.

Note added in proof

After this work has been completed and accepted for publication, we became aware of the
following two recent papers: arxiv:math.CO/0507163 and arxiv.math.CO/0504231. These papers
are not only supporting results presented in the main text, they also provide numerous additional
details potentially useful for physical applications. Some of these applications will be discussed
in Part IV.
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